This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099425 #56 Apr 19 2024 10:38:54 %S A099425 1,2,6,14,34,82,198,478,1154,2786,6726,16238,39202,94642,228486, %T A099425 551614,1331714,3215042,7761798,18738638,45239074,109216786,263672646, %U A099425 636562078,1536796802,3710155682,8957108166,21624372014,52205852194,126036076402,304278004998 %N A099425 Expansion of (1+x^2)/(1-2*x-x^2). %C A099425 Binomial transform of A094024(n+1). %C A099425 a(n) is the number of matchings of the corona C'(n) of the cycle graph C(n) and the complete graph K(1); in other words, C'(n) is the graph constructed from C(n) to which for each vertex v a new vertex v' and the edge vv' is added. Example: a(3)=14 because in the graph with vertex set {A,B,C,a,b,c} and edge set {AB,AC,BC,Aa,Bb,Cc} we have the following 14 matchings: the empty set, the six singletons containing one of the edges, {Aa,BC}, {Bb,AC}, {Cc,AB}, {Aa,Bb}, {Aa,Cc}, {Bb,Cc} and {Aa,Bb,Cc}. Row sums of A102413. - _Emeric Deutsch_, Jan 07 2005 %C A099425 Apart from first term, same as A002203. - _Peter Shor_, May 12 2005 %C A099425 Equals the INVERT transform of integers with repeats. Example: a(4) = 34 = (1, 1, 2, 6, 14) dot (5, 3, 3, 1, 1) = (5 + 3 + 6 + 6 + 14) = 34. %H A099425 Reinhard Zumkeller, <a href="/A099425/b099425.txt">Table of n, a(n) for n = 0..1000</a> %H A099425 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,1). %F A099425 a(n) = (1+sqrt(2))^n + (1-sqrt(2))^n - 0^n see silver mean (A014176). %F A099425 a(n) = Sum_{k=0..n} A000129(n+1-k)*C(1, k/2)*(1+(-1)^k)/2. %F A099425 a(n) = 2*A001333(n) - 0^n. %F A099425 a(n) = round((1+sqrt(2))^n). - _Bruno Berselli_, Feb 04 2013 %F A099425 G.f.: G(0) - 1, where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - 1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jul 30 2013 %F A099425 a(n) = A000129(n+1) + A000129(n-1). - _Vladimir Kruchinin_, Apr 19 2024 %p A099425 a:= n-> (<<0|1>, <1|2>>^n. <<2, 2>>)[1, 1]-0^n: %p A099425 seq(a(n), n=0..30); # _Alois P. Heinz_, Jan 26 2018 %t A099425 CoefficientList[Series[(1+x^2)/(1-2x-x^2),{x,0,30}],x] (* or *) LinearRecurrence[{2,1},{1,2,6},40] (* _Harvey P. Dale_, Mar 23 2020 *) %o A099425 (Haskell) %o A099425 a099425 = sum . a102413_row -- _Reinhard Zumkeller_, Apr 15 2014 %Y A099425 Cf. A000129, A001333, A002203, A094024, A102413. %Y A099425 Cf. A014176 (silver mean). %K A099425 nonn,easy %O A099425 0,2 %A A099425 _Paul Barry_, Oct 15 2004