This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099448 #17 Jan 15 2025 01:45:32 %S A099448 1,5,19,65,216,715,2369,7855,26051,86400,286549,950345,3151831, %T A099448 10453085,34667784,114976135,381319781,1264651795,4194233399, %U A099448 13910227200,46133441401,153002131805,507433471819,1682909416265,5581389996216 %N A099448 A Chebyshev transform of A030191 associated to the knot 7_6. %C A099448 The denominator is a parameterization of the Alexander polynomial for the knot 7_6. The g.f. is the image of the g.f. of A030191 under the Chebyshev transform A(x)->(1/(1+x^2))A(x/(1+x^2)). %H A099448 Dror Bar-Natan, <a href="http://katlas.org/wiki/Main_Page">The Rolfsen Knot Table</a> %H A099448 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,-7,5,-1). %F A099448 G.f.: (1+x^2)/(1-5*x+7*x^2-5*x^3+x^4). %F A099448 a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k*(Sum_{j=0..n-2*k} C(n-2*k-j, j)*(-5)^j*5^(n-2*k-2*j)). %F A099448 a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k*A030191(n-2*k). %F A099448 a(n) = Sum_{k=0..n} binomial((n+k)/2, k)*(-1)^((n-k)/2)*(1+(-1)^(n+k))*A030191(k)/2. %F A099448 a(n) = Sum_{k=0..n} A099449(n-k)*(1+(-1)^k)/2. %t A099448 CoefficientList[Series[(1+x^2)/(1-5x+7x^2-5x^3+x^4),{x,0,30}],x] (* or *) %t A099448 LinearRecurrence[{5,-7,5,-1},{1,5,19,65},30] (* _Harvey P. Dale_, Nov 27 2013 *) %Y A099448 Cf. A030191, A099449. %K A099448 easy,nonn %O A099448 0,2 %A A099448 _Paul Barry_, Oct 16 2004