This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099460 #19 Sep 08 2022 08:45:15 %S A099460 1,7,39,203,1040,5313,27133,138565,707643,3613904,18456077,94254531, %T A099460 481354555,2458260679,12554250288,64114111901,327428500337, %U A099460 1672165762785,8539691368807,43611901581472,222724437852585 %N A099460 A Chebyshev transform of A099459 associated to the knot 9_48. %C A099460 The denominator is a parameterization of the Alexander polynomial for the knot 9_48. The g.f. is the image of the g.f. of A099459 under the Chebyshev transform A(x) -> (1/(1+x^2))*A(x/(1+x^2)). %H A099460 G. C. Greubel, <a href="/A099460/b099460.txt">Table of n, a(n) for n = 0..1000</a> %H A099460 Dror Bar-Natan, <a href="http://katlas.org/wiki/9_48">9 48</a>, The Knot Atlas. %H A099460 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7,-11,7,-1). %F A099460 G.f.: (1+x^2)/(1 -7*x +11*x^2 -7*x^3 +x^4). %F A099460 a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k*( Sum_{j=0..n-2*k} C(n-2*k-j, j)(-9)^j*7^(n-2*k-2*j) ). %F A099460 a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)(-1)^k*A099459(n-2*k). %F A099460 a(n) = (1/2)*Sum_{k=0..n} (-1)^((n-k)/2)*(1 + (-1)^(n+k))*binomial((n+k)/2, k) *A099459(k). %F A099460 a(n) = Sum_{k=0..n} A099461(n-k)*binomial(1, k/2)*((1+(-1)^k)/2). %t A099460 LinearRecurrence[{7,-11,7,-1}, {1,7,39,203}, 30] (* _G. C. Greubel_, Nov 18 2021 *) %o A099460 (Magma) I:=[1,7,39,203]; [n le 4 select I[n] else 7*Self(n-1) - 11*Self(n-2) +7*Self(n-3) -Self(n-4): n in [1..31]]; // _G. C. Greubel_, Nov 18 2021 %o A099460 (Sage) %o A099460 def A099460_list(prec): %o A099460 P.<x> = PowerSeriesRing(ZZ, prec) %o A099460 return P( (1+x^2)/(1-7*x+11*x^2-7*x^3+x^4) ).list() %o A099460 A099460_list(30) # _G. C. Greubel_, Nov 18 2021 %Y A099460 Cf. A099459, A099461. %K A099460 easy,nonn %O A099460 0,2 %A A099460 _Paul Barry_, Oct 16 2004