cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099494 A Chebyshev transform of Fibonacci(n)+(-1)^n.

This page as a plain text file.
%I A099494 #17 Jan 15 2025 06:31:28
%S A099494 1,0,1,1,-1,0,0,-2,0,1,-1,1,2,-1,0,1,-2,-1,1,-1,0,2,0,0,1,-1,-1,0,-1,
%T A099494 0,1,0,1,1,-1,0,0,-2,0,1,-1,1,2,-1,0,1,-2,-1,1,-1,0,2,0,0,1,-1,-1,0,
%U A099494 -1,0,1,0,1,1,-1,0,0,-2,0,1,-1,1,2,-1,0,1,-2,-1,1,-1,0,2,0,0,1,-1,-1
%N A099494 A Chebyshev transform of Fibonacci(n)+(-1)^n.
%C A099494 A Chebyshev transform of A008346, which has g.f. 1/(1-2x^2-x^3). The image of G(x) under the Chebyshev transform is (1/(1+x^2))*G(x/(1+x^2)).
%C A099494 Periodic with period length 30. - _Ray Chandler_, Sep 08 2015
%H A099494 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,-1,1,-1,0,-1).
%F A099494 G.f.: (1+x^2)^2/(1+x^2-x^3+x^4+x^6).
%F A099494 a(n) = -a(n-2)+a(n-3)-a(n-4)-a(n-6).
%F A099494 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*(F(n-2*k)+(-1)^(n-2*k)).
%F A099494 a(n) = A014019(n-1) + A000484(n).
%Y A099494 Cf. A000484, A008346, A014019
%K A099494 easy,sign
%O A099494 0,8
%A A099494 _Paul Barry_, Oct 19 2004