cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099498 Semiprimes of the form A007925(n) = n^(n+1)-(n+1)^n.

This page as a plain text file.
%I A099498 #9 Sep 08 2022 08:45:15
%S A099498 7849,3667649,91171007,2395420006033,11877172892329028459041,
%T A099498 604107995057426434824791,107174878415004743976428761769,
%U A099498 424678439961073471604787362241217,1983672219242345491970468171243171249,10788746499945827829225142589096882612369,42855626937384013751014398588294858582343260060671
%N A099498 Semiprimes of the form A007925(n) = n^(n+1)-(n+1)^n.
%e A099498 a(1)=7849 because 5^6-6^5=7849=47*167 is a semiprime.
%t A099498 Select[Table[n^(n + 1) - (n + 1)^n, {n, 30}], PrimeOmega[#] == 2&] (* _Vincenzo Librandi_, Sep 21 2012 *)
%o A099498 (Magma) IsSemiprime:=func<n | &+[d[2]: d in Factorization(n)] eq 2>; [s: n in [3..30] | IsSemiprime(s) where s is n^(n+1)-(n+1)^n]; // _Vincenzo Librandi_, Sep 21 2012
%Y A099498 Cf. A007925 n^(n+1)-(n+1)^n, A072179 n^(n+1)-(n+1)^n is prime, A099499 primes of the form n^(n+1)-(n+1)^n, A099497 n^(n+1)-(n+1)^n is a semiprime.
%K A099498 nonn
%O A099498 1,1
%A A099498 _Hugo Pfoertner_, Oct 19 2004
%E A099498 a(9)-a(11) from _Vincenzo Librandi_, Sep 21 2012