This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099506 #17 Mar 15 2024 03:55:59 %S A099506 1,3,6,2,8,4,10,14,13,7,15,9,17,11,19,29,5,31,26,34,50,16,30,18,32,20, %T A099506 61,23,35,25,37,27,39,63,42,66,45,69,48,72,51,33,53,79,56,36,58,38,60, %U A099506 40,62,94,12,96,124,44,70,46,131,49,73,113,76,52,78,54,80,192,84,126,87 %N A099506 a(1)=1; for n > 1, a(n)=smallest m>0 that has not appeared so far in the sequence such that m+a(n-1) is a multiple of n. %H A099506 Robert Israel, <a href="/A099506/b099506.txt">Table of n, a(n) for n = 1..10000</a> %e A099506 a(1)=1 by definition. %e A099506 a(2)=3 because then a(2)+a(1)=3+1=4 which is a multiple of 2. a(2) cannot be 1 (which would lead to a sum of 2) because this has already appeared. %e A099506 Likewise, a(3)=6 so that a(3)+a(2)=6+3=9 which is a multiple of 3. %e A099506 a(4)=2 so that a(4)+a(3)=2+6=8 and so on. %o A099506 (PARI) v=[1];n=1;while(n<100,s=n+v[#v];if(!(s%(#v+1)||vecsearch(vecsort(v),n)),v=concat(v,n);n=0);n++);v \\ _Derek Orr_, Jun 16 2015 %o A099506 (MATLAB) %o A099506 N = 100; %o A099506 M = 10*N; % find a(1) to a(N) or until a(n) > M %o A099506 B = zeros(1,M); %o A099506 A = zeros(1,N); %o A099506 mmin = 2; %o A099506 A(1) = 1; %o A099506 B(1) = 1; %o A099506 for n = 2:N %o A099506 for m = mmin:M %o A099506 if mmin == m && B(m) == 1 %o A099506 mmin = mmin+1; %o A099506 elseif B(m) == 0 && rem(m + A(n-1),n) == 0 %o A099506 A(n) = m; %o A099506 B(m) = 1; %o A099506 if m == mmin %o A099506 mmin = mmin + 1; %o A099506 end; %o A099506 break %o A099506 end; %o A099506 end; %o A099506 if A(n) == 0 %o A099506 break %o A099506 end %o A099506 end; %o A099506 if A(n) == 0 %o A099506 A(1:n-1) %o A099506 else %o A099506 A %o A099506 end; % _Robert Israel_, Jun 17 2015 %Y A099506 Cf. A099507 for positions of occurrences of integers in this sequence. %Y A099506 Cf. A125717. %K A099506 easy,nonn %O A099506 1,2 %A A099506 Mark Hudson (mrmarkhudson(AT)hotmail.com), Oct 20 2004