This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099575 #18 Jul 25 2022 04:02:54 %S A099575 1,1,1,1,1,4,1,1,5,5,1,1,6,6,21,1,1,7,7,28,28,1,1,8,8,36,36,120,1,1,9, %T A099575 9,45,45,165,165,1,1,10,10,55,55,220,220,715,1,1,11,11,66,66,286,286, %U A099575 1001,1001,1,1,12,12,78,78,364,364,1365,1365,4368,1,1,13,13,91,91,455,455,1820,1820,6188,6188 %N A099575 Number triangle T(n,k) = binomial(n + floor(k/2) + 1, n + 1), 0 <= k <= n. %C A099575 Original name was: "Number triangle T(n,k) = if(k<=n, Sum_{j=0..floor(k/2)} binomial(n+j,j), 0)." %H A099575 Robert Israel, <a href="/A099575/b099575.txt">Table of n, a(n) for n = 0..10010</a> (Rows 0..140, flattened) %F A099575 T(n, k) = binomial(n + floor(k/2) + 1, n + 1). %F A099575 T(n, n) = A099578(n). %F A099575 Sum_{k=0..n} T(n, k) = A099576(n). %F A099575 Sum_{k=0..floor(n/2)} T(n-k, k) = A099577(n). %e A099575 Rows start: %e A099575 1; %e A099575 1, 1; %e A099575 1, 1, 4; %e A099575 1, 1, 5, 5; %e A099575 1, 1, 6, 6, 21; %e A099575 1, 1, 7, 7, 28, 28; %e A099575 1, 1, 8, 8, 36, 36, 120; %e A099575 1, 1, 9, 9, 45, 45, 165, 165; %e A099575 1, 1, 10, 10, 55, 55, 220, 220, 715; %p A099575 for n from 0 to 20 do seq(binomial(n+floor(k/2)+1,n+1),k=0..n) od; # _Robert Israel_, May 08 2018 %t A099575 Table[Binomial[n+Floor[k/2]+1, n+1], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jul 24 2022 *) %o A099575 (Magma) [Binomial(n+1+Floor(k/2), n+1): k in [0..n], n in [0..15]]; // _G. C. Greubel_, Jul 24 2022 %o A099575 (SageMath) flatten([[binomial(n+(k//2)+1, n+1) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Jul 24 2022 %Y A099575 Cf. A099573, A099576 (row sums), A099577 (diagonal sums), A099578 (main diagonal). %K A099575 easy,nonn,tabl %O A099575 0,6 %A A099575 _Paul Barry_, Oct 23 2004 %E A099575 Definition simplified by _Robert Israel_, May 08 2018