This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099580 #13 Jul 24 2022 04:25:09 %S A099580 0,0,1,1,9,13,65,117,441,909,2929,6565,19305,45565,126881,309141, %T A099580 833049,2069613,5467345,13745797,35877321,90860509,235418369, %U A099580 598860405,1544728185,3940169805,10135859761,25896538981,66507086889,170093242813 %N A099580 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1) * 4^(k-1). %C A099580 In general a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1) * r^(k-1) has g.f. x^2/((1-r*x^2)*(1-x-r*x^2)) and satisfies the recurrence a(n) = a(n-1) + 2*r*a(n-2) - r*a(n-3) - r^2*a(n-4). %H A099580 G. C. Greubel, <a href="/A099580/b099580.txt">Table of n, a(n) for n = 0..1000</a> %H A099580 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,8,-4,-16). %F A099580 G.f.: x^2/((1-4*x^2) * (1-x-4*x^2)). %F A099580 a(n) = a(n-1) + 8*a(n-2) - 4*a(n-3) - 16*a(n-4). %F A099580 From _G. C. Greubel_, Jul 24 2022: (Start) %F A099580 a(n) = (4*(2/i)^(n-1)*ChebyshevU(n-1, i/4) - 2^n*(1-(-1)^n))/4. %F A099580 E.g.f.: ( 4*exp(x/2)*sinh(sqrt(17)*x/2) - sqrt(17)*sinh(2*x) )/(2*sqrt(17)). (End) %t A099580 LinearRecurrence[{1,8,-4,-16}, {0,0,1,1}, 51] (* _G. C. Greubel_, Jul 24 2022 *) %o A099580 (Magma) [n le 4 select Floor((n-1)/2) else Self(n-1) +8*Self(n-2) -4*Self(n-3) -16*Self(n-4): n in [1..41]]; // _G. C. Greubel_, Jul 24 2022 %o A099580 (SageMath) %o A099580 @CachedFunction %o A099580 def a(n): # a = A099580 %o A099580 if (n<4): return (n//2) %o A099580 else: return a(n-1) +8*a(n-2) -4*a(n-3) -16*a(n-4) %o A099580 [a(n) for n in (0..40)] # _G. C. Greubel_, Jul 24 2022 %Y A099580 Cf. A006131, A097038, A099579. %K A099580 easy,nonn %O A099580 0,5 %A A099580 _Paul Barry_, Oct 23 2004