A099596 Primes p such that the denominator of the poly-Bernoulli number B(2,n) equals 8p.
3, 5, 11, 17, 23, 47, 59, 83, 107, 137, 167, 179, 227, 239, 257, 263, 317, 347, 359, 383, 431, 443, 467, 479, 503, 557, 563, 587, 647, 659, 719, 797, 827, 839, 857, 863, 887, 983, 1019, 1091, 1097, 1187, 1223, 1259, 1283, 1307, 1319, 1367, 1439, 1487, 1499
Offset: 1
Keywords
Programs
-
Mathematica
f[n_] := Denominator[(-1)^n*Sum[(-1)^m*m!*StirlingS2[n, m]/(m + 1)^2, {m, 0, n}]]; l = {}; Do[p = Prime[n]; If[f[p] == 8p, AppendTo[l, p]], {n, 240}]; l (* Robert G. Wilson v, Oct 28 2004 *)
Extensions
More terms from Robert G. Wilson v, Oct 28 2004
Comments