This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099599 #49 Aug 28 2025 20:00:00 %S A099599 1,1,1,1,0,2,1,9,-12,6,1,-104,204,-120,24,1,2265,-4840,3540,-1080,120, %T A099599 1,-71064,164910,-138840,54360,-10080,720,1,3079825,-7626948,7134330, %U A099599 -3300360,808920,-100800,5040,1,-176449776,460982648,-468313104,244938960,-72266880,12156480,-1088640,40320 %N A099599 Triangle T read by rows: coefficients of polynomials generating array A099597. %C A099599 Row sums are k (A000027), left edge columns are factorials (A000142). - _Peter Bala_, Aug 19 2013 %F A099599 The row polynomials satisfy the second order recurrence equation R(n,x) = (n*x+1)*R(n-1,x-1) - (n-1)*(x-1)*R(n-2,x-2), with the initial conditions R(0,x) = 1 and R(1,x) = 1+x. - _Peter Bala_, Aug 19 2013 %F A099599 From _Natalia L. Skirrow_, Jul 18 2025: (Start) %F A099599 T(n,k) = Sum_{i=k..n} (n!/(n-i)!) * A048994(i,k). %F A099599 T(n,k) = n * ((n-1)*(T(n-2,k)-T(n-1,k)) + T(n-1,k-1)) for k>0 (without this criterion, defines a unique continuation to negative k). %F A099599 O.g.f.: hypergeom([1,1,-y],[],x/(x-1)) / (1-x). %F A099599 E.g.f.: e^x*hypergeom([1,-y],[],-x). %F A099599 Row polynomials are: %F A099599 R(n,y) = hypergeom([1,-n,-y],[],1). %F A099599 R(n,y) = n * ((y-n+1)*R(n-1,y) + (n-1)*R(n-2,y)) + 1. %F A099599 R(n,y) = 1 + n!*y!*I_{y-n}(2) - hypergeom([1],[n+1,y+1],1) where I is the Bessel function. (End) %e A099599 Row polynomials: %e A099599 1, %e A099599 x + 1, %e A099599 2*x^2 + 1, %e A099599 6*x^3 - 12*x^2 + 9*x + 1, %e A099599 24*x^4 - 120*x^3 + 204*x^2 - 104*x + 1, %e A099599 120*x^5 - 1080*x^4 + 3540*x^3 - 4840*x^2 + 2265*x + 1, %e A099599 ... %p A099599 # Define row polynomials R(n, x) recursively: %p A099599 R := proc(n, x) option remember; if n = 0 then 1 elif n = 1 then 1+x %p A099599 else (n*x+1)*procname(n-1,x-1) - (n-1)*(x-1)*procname(n-2, x-2) fi end: %p A099599 Trow := n -> PolynomialTools:-CoefficientList(R(n,x), x); %p A099599 seq(Trow(n), n = 0..10); # _Peter Bala_, Aug 19 2013 %t A099599 R[n_, x_] := R[n, x] = (n x + 1) R[n-1, x-1] - (n-1) (x-1) R[n-2, x-2]; R[0, _] = 1; R[1, x_] = 1 + x; %t A099599 Table[CoefficientList[R[n, x], x], {n, 0, 8}] // Flatten (* _Jean-François Alcover_, Nov 13 2019 *) %t A099599 R[n_,y_] := HypergeometricPFQ[{1,-n,-y},{},1] (* _Natalia L. Skirrow_, Jul 18 2025 *) %o A099599 (Python) %o A099599 from fractions import Fraction as frac %o A099599 from math import factorial as fact %o A099599 from sympy.functions.combinatorial.numbers import stirling %o A099599 A099599=lambda n,k: sum(map(lambda i: frac(fact(n),fact(n-i))*(-1)**(i-k)*stirling(i,k,kind=1),range(k,n+1))) # _Natalia L. Skirrow_, Jul 18 2025 %Y A099599 Cf. A000027, A000142, A099597, A132393. %K A099599 sign,tabl,changed %O A099599 0,6 %A A099599 _Ralf Stephan_, Oct 28 2004