cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A176831 List of all primes p such that 2*A099609(2n-1)A099609(2n).

Original entry on oeis.org

5, 7, 11, 13, 23, 37, 59, 61, 83, 277, 359, 383, 397, 457, 479, 541, 563, 839, 863, 1201, 1237, 1283, 1319, 1321, 1619, 1621, 1657, 2039, 2063, 2099, 2459, 2557, 2579, 2857, 2903, 2963, 3217, 3863, 4057, 4177, 4259, 4261, 4283, 4621, 4679, 5099, 5101, 5581
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 27 2010

Keywords

Comments

Where A099609 is a naive list of twin primes (A077800 prefixed by 2,3).

Examples

			a(1)=5 because 2*A099609(2*1-1)=4<5(prime)<2*A099609(2*1)=6;
a(2)=7 because 2*A099609(2*2-1)=6<7(prime)<2*A099609(2*2)=10;
a(3)=11 and a(4)=13 because 2*A099609(2*3-1)<11(prime)<13(prime)<2*A099609(2*3).
		

Crossrefs

Programs

  • Mathematica
    Flatten@ Map[Select[Range @@ #, PrimeQ] &, 2 Select[Partition[#, 2, 1] &@ Prime@ Range@ 410, First@ Differences@ # <= 2 &]] (* Michael De Vlieger, Mar 18 2017 *)

Extensions

Entries checked by R. J. Mathar, May 10 2010

A176834 List of all primes p such that 3*A099609(2n-1)A099609(2n).

Original entry on oeis.org

7, 11, 13, 17, 19, 37, 53, 89, 127, 179, 181, 307, 449, 541, 577, 593, 683, 719, 809, 811, 937, 1259, 1297, 1567, 1709, 1801, 1979, 2467, 2647, 3061, 3187, 3457, 3691, 3833, 3907, 4283, 4357, 4447, 4463, 4861, 5003, 5167, 5849, 5851, 6247, 6263, 6337, 6389
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 27 2010

Keywords

Comments

Where A099609 is a naive list of twin primes (A077800 prefixed by 2,3).

Examples

			a(1)=7 because 3*A099609(2*1-1)=6<7(prime)<3*A099609(2*1)=9; a(2)=11 and a(3)=13 because 3*A099609(2*2-1)=9<11(prime)<13(prime)<3*A099609(2*2)=15; a(4)=17 and a(5)=19 because 3*A099609(2*3-1)=15<17(prime)<19(prime)<3*A099609(2*3)=21.
		

Crossrefs

Cf. A171821.

Programs

  • Maple
    Contribution from R. J. Mathar, May 10 2010: (Start)
    A077800 := proc(n) if type(n,'even') then A006512(n/2) ; else A001359((n+1)/2) ; end if; end proc:
    A099609 := proc(n) if n <= 2 then n+1 ; else A077800(n-2) ; end if; end proc:
    for n from 1 to 100 do lpr := 3*A099609(2*n-1) ; upr := 3*A099609(2*n) ; for p from lpr+1 to upr-1 do if isprime(p) then printf("%d,",p) ; end if; end do: end do: (End)

Extensions

Corrected (3691 inserted) by R. J. Mathar, May 10 2010

A138329 List of strictly non-palindromic twin primes {p, p+2}.

Original entry on oeis.org

137, 139, 4337, 4339, 8291, 8293, 9419, 9421, 10937, 10939, 13757, 13759, 19427, 19429, 20981, 20983, 36011, 36013, 38327, 38329, 43397, 43399, 59441, 59443, 71327, 71329, 74717, 74719, 76871, 76873, 90437, 90439, 91571, 91573, 117239
Offset: 1

Views

Author

Karl Hovekamp, Mar 14 2008

Keywords

Comments

The strictly non-palindromic twin primes are a part of the normal twin primes. See the list of twin primes A077800 and A016038 for the strictly non-palindromic numbers.

References

  • Karl Hovekamp, Palindromzahlen in adischen Zahlensystemen, 2004

Crossrefs

Formula

Twin primes, where both numbers {p} and {p+2} are strictly non-palindromic.
Showing 1-3 of 3 results.