A099625 a(n) = Sum_{k=0..floor(n/2)} C(n-k,k+2)*2^(n-k-2)*(1/2)^k.
0, 0, 1, 6, 25, 88, 281, 842, 2413, 6692, 18101, 48014, 125393, 323376, 825393, 2088850, 5248853, 13110844, 32584653, 80639446, 198844281, 488813768, 1198491913, 2931934938, 7158830781, 17450923092, 42480107365, 103283553054, 250859152801, 608759955040, 1476163691105
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-11,4,4).
Programs
-
Mathematica
LinearRecurrence[{6, -11, 4, 4}, {0, 0, 1, 6}, 35] (* Paolo Xausa, Jan 15 2025 *)
Formula
G.f.: x^2/((1-2*x)^2*(1-2*x-x^2)).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k+2)*2^(n-2*k-2).
a(n) = 6*a(n-1)-11*a(n-2)+4*a(n-3)+4*a(n-4).
a(n) = A000129(n+3) -(n+5)*2^n. - R. J. Mathar, Dec 16 2024
Comments