cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099625 a(n) = Sum_{k=0..floor(n/2)} C(n-k,k+2)*2^(n-k-2)*(1/2)^k.

Original entry on oeis.org

0, 0, 1, 6, 25, 88, 281, 842, 2413, 6692, 18101, 48014, 125393, 323376, 825393, 2088850, 5248853, 13110844, 32584653, 80639446, 198844281, 488813768, 1198491913, 2931934938, 7158830781, 17450923092, 42480107365, 103283553054, 250859152801, 608759955040, 1476163691105
Offset: 0

Views

Author

Paul Barry, Oct 25 2004

Keywords

Comments

In general a(n) = Sum_{k=0..floor(n/2)} C(n-k,k+2)*u^(n-k-2)*(v/u)^k has g.f. x^2/((1-u*x)^2*(1-u*x-v*x^2)) and satisfies the recurrence a(n) = 3*u*a(n-1)-(3*u^2-v)*a(n-2)+(u^3-2*u*v)*a(n-3)+u^2*v*a(n-4).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6, -11, 4, 4}, {0, 0, 1, 6}, 35] (* Paolo Xausa, Jan 15 2025 *)

Formula

G.f.: x^2/((1-2*x)^2*(1-2*x-x^2)).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k+2)*2^(n-2*k-2).
a(n) = 6*a(n-1)-11*a(n-2)+4*a(n-3)+4*a(n-4).
a(n) = A000129(n+3) -(n+5)*2^n. - R. J. Mathar, Dec 16 2024