This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099628 #33 Jan 31 2024 17:21:50 %S A099628 2,4,5,8,9,11,16,17,19,23,32,33,35,39,47,64,65,67,71,79,95,128,129, %T A099628 131,135,143,159,191,256,257,259,263,271,287,319,383,512,513,515,519, %U A099628 527,543,575,639,767,1024,1025,1027,1031,1039,1055,1087,1151,1279,1535,2048 %N A099628 Numbers m where m-th Catalan number A000108(m) = binomial(2m,m)/(m+1) is divisible by 2 but not by 4, i.e., where A048881(m) = 1. %C A099628 Also, there is exactly one digit position in which both a(n)+1 and a(n)-1, written in binary, have a 1; i.e., the bitwise AND of a(n)-1 and a(n)+1 is 2^k, with k > 0. - _Wouter Meeussen_, Nov 24 2007 %H A099628 Michael De Vlieger, <a href="/A099628/b099628.txt">Table of n, a(n) for n = 1..11175</a> (rows 2..150) %H A099628 Barry Brent, <a href="https://arxiv.org/abs/2212.12515">On the constant terms of certain meromorphic modular forms for Hecke groups</a>, arXiv:2212.12515 [math.NT], 2022. %H A099628 Barry Brent, <a href="https://doi.org/10.20944/preprints202306.1164.v6">On the Constant Terms of Certain Laurent Series</a>, Preprints (2023) 2023061164. %H A099628 Michael De Vlieger, <a href="/A099628/a099628.png">Log log scatterplot of a(n)</a>, n = 1..1830. %H A099628 Michael De Vlieger, <a href="/A099628/a099628_1.png">Bitmap showing the binary expansion of a(n)</a> n = 1..300 (24 rows), bits arranged from least to most significant from bottom, n increasing toward the right, where black = 1 and white = 0. %F A099628 As triangle, T(n,k) = 2^(n+1) + 2^k - 1 = A099627(n+1, k). %e A099628 As triangle, rows start %e A099628 2; %e A099628 4, 5; %e A099628 8, 9, 11; %e A099628 16, 17, 19, 23; %e A099628 32, 33, 35, 39, 47; %e A099628 ... %e A099628 5 is in the sequence since 10!/(5!6!) = 42 is divisible by 2 but not 4; %e A099628 6 is not in the sequence since 12!/(6!7!) = 132 is divisible by 4; %e A099628 7 is not in the sequence since 14!/(7!8!) = 429 is not divisible by 2. %e A099628 From _Michael De Vlieger_, Dec 28 2022: (Start) %e A099628 Table showing the binary expansion of a(n) for n = 1..15, replacing 0 with "." to accentuate the pattern of bits: %e A099628 n a(n) a(n)_2 %e A099628 ---------------- %e A099628 1 2 1. %e A099628 2 4 1.. %e A099628 3 5 1.1 %e A099628 4 8 1... %e A099628 5 9 1..1 %e A099628 6 11 1.11 %e A099628 7 16 1.... %e A099628 8 17 1...1 %e A099628 9 19 1..11 %e A099628 10 23 1.111 %e A099628 11 32 1..... %e A099628 12 33 1....1 %e A099628 13 35 1...11 %e A099628 14 39 1..111 %e A099628 15 47 1.1111 (End) %t A099628 Select[Range[2048],IntegerQ[Log[2,BitAnd[ #+1,#-1]]]&] (* _Wouter Meeussen_, Nov 24 2007 *) %t A099628 Table[2^(n + 1) + 2^k - 1, {n, 0, 10}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Dec 28 2022 *) %t A099628 Select[Range[2100],Boole[Divisible[CatalanNumber[#],{2,4}]]=={1,0}&] (* _Harvey P. Dale_, Jan 31 2024 *) %o A099628 (Magma) /* As triangle */ [[2^(n+1) + 2^k - 1: k in [0..n]]: n in [0.. 15]]; // _Vincenzo Librandi_, Jul 27 2017 %o A099628 (Python) %o A099628 from itertools import count, islice %o A099628 def A099628_gen(): # generator of terms %o A099628 m = 1 %o A099628 for n in count(1): %o A099628 m *= 2 %o A099628 r, k = m-1,1 %o A099628 for _ in range(n): %o A099628 yield r+k %o A099628 k *= 2 %o A099628 A099628_list = list(islice(A099628_gen(),40)) # _Chai Wah Wu_, Nov 15 2022 %Y A099628 Cf. A000108, A048881, A099627. %K A099628 easy,nonn,tabl %O A099628 1,1 %A A099628 _Henry Bottomley_, Oct 25 2004 %E A099628 Offset changed to 1 by _N. J. A. Sloane_, Jul 27 2017