This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099632 #24 Sep 03 2019 19:51:32 %S A099632 45,694,3768374,6303735,15913725,20291271,42824146,47788894,54424095, %T A099632 141120134,163380694,219105494,305034794,404686557,790565966, %U A099632 893558445,928608435,1198745925,1251276254,1409720194,1412229015,1696122945 %N A099632 1-sigma-balanced numbers: numbers n such that (sigma(n-d)+sigma(n+d))/2 = sigma(n) for d=1. %C A099632 These terms, the 1-sigma-balanced numbers, seems to be significantly rarer than those with d=2,4,6,8,10.. It seems also that the 6-sigma-balanced numbers are very common. %H A099632 Giovanni Resta, <a href="/A099632/b099632.txt">Table of n, a(n) for n = 1..91</a> (terms < 4*10^12) %F A099632 Solutions to sigma(x-d)+sigma(x+d)=2*sigma(x) where d=1. %e A099632 n=20291271, a=sigma(n-1)=37374480, b=sigma(n+1)=38104560, sigma(n)=37739520=(a+b)/2. %t A099632 d=1;Do[s=(DivisorSigma[1, n+d]+DivisorSigma[1, n-d])/ 2-DivisorSigma[1, n];If[Equal[s, 0], Print[n]], {n, 1, 100000000}] %o A099632 (PARI) is(n) = n>1 && (sigma(n-1)+sigma(n+1))/2==sigma(n) \\ _Felix Fröhlich_, Sep 03 2019 %Y A099632 Cf. A000203, A099631 (2-sigma-balanced numbers). %K A099632 nonn %O A099632 1,1 %A A099632 _Labos Elemer_, Oct 26 2004 %E A099632 a(10)-a(22) from _Donovan Johnson_, Feb 01 2009