A099634 a(n) = gcd(P+p, P*p) where P is the largest and p the smallest prime factor of n.
4, 3, 4, 5, 1, 7, 4, 3, 1, 11, 1, 13, 1, 1, 4, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 4, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 4, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 3, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1, 1, 97
Offset: 2
Keywords
Examples
If n is prime q > 2, then a(n) = gcd(q^2, 2q) = q.
Programs
-
Mathematica
PrimeFactors[n_Integer] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; f[n_] := Block[{pf = PrimeFactors[n]}, GCD[pf[[1]] + pf[[ -1]], pf[[1]]*pf[[ -1]] ]]; Table[ f[n], {n, 2, 97}] (* Robert G. Wilson v, Nov 04 2004 *)