cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099634 a(n) = gcd(P+p, P*p) where P is the largest and p the smallest prime factor of n.

Original entry on oeis.org

4, 3, 4, 5, 1, 7, 4, 3, 1, 11, 1, 13, 1, 1, 4, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 1, 31, 4, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 4, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 3, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1, 1, 97
Offset: 2

Views

Author

Labos Elemer, Oct 28 2004

Keywords

Examples

			If n is prime q > 2, then a(n) = gcd(q^2, 2q) = q.
		

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; f[n_] := Block[{pf = PrimeFactors[n]}, GCD[pf[[1]] + pf[[ -1]], pf[[1]]*pf[[ -1]] ]]; Table[ f[n], {n, 2, 97}] (* Robert G. Wilson v, Nov 04 2004 *)