cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099646 Function f(n) = 1 + Sum(digit^2 of n) is iterated and a(n) is the length of terminal cycle at initial value n.

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 9, 9, 9, 9, 1, 9, 9, 9, 1, 9, 9, 9, 9, 9, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 1

Views

Author

Labos Elemer, Nov 11 2004

Keywords

Comments

Iteration g(x) applied in A031176 is slightly modified to obtain actual function: f(x) = 1 + g(x). Cases of a(n) = 1 (n = 35, 36, 46, 53, 57, 63, 64, 75, 135, ...) are analogous to happy numbers A007770.

Examples

			For n = 1: iteration-list= {1,2,5,26,41,18,66,73,59,107,51,[27,54,42,21,6,37,59,107,51],27...
with t = 11 transient and c = a(1) = 9, the cycle-length;
For n = 35: list={36,46,53,[35],35,...} with transient t = 3, c = a(35) = 1 the cycle-length.
		

Crossrefs

Programs

  • Mathematica
    ed[x_] :=IntegerDigits[x]; f[x_] :=Apply[Plus, ed[x]^2]+1; itef[x_, ho_] :=NestList[f, x, ho]; tmc=Table[Length[Union[itef[w, 100]]], {w, 1, 256}]; c1=Table[Min[Flatten[Position[itef[w, Length[Union[itef[w, 100]]]] -Last[itef[w, Length[Union[itef[w, 100]]]]], 0]]], {w, 1, 256}]; (* transient-length= *) c1-1; (* cycle-length= *) c=tmc-(c1-1); (* ho=iteration number is chosen by trial and error *) (* program provides t, t+c and c lengths[=unknown-in-advance] for any similar iterations if f modified *)
    (* Second program: *)
    With[{nn = 10^3}, Table[Function[s, Length@ KeySelect[s, Length@ Lookup[s, #] > 1 &]]@ PositionIndex@ NestList[1 + Total[ IntegerDigits[#]^2] &, n, nn], {n, 105}]] (* Michael De Vlieger, Jul 24 2017 *)