This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099679 #26 Aug 02 2024 12:03:56 %S A099679 1,3,6,9,2,6,16,18,6,22,27,28,15,6,3,6,5,21,46,42,48,13,18,58,60,18, %T A099679 33,66,35,8,6,13,81,41,84,44,6,15,96,18,4,34,53,108,3,112,18,48,22,15, %U A099679 42,21,130,18,8,46,138,6,42,148,75,144,78,39,66,81,166,78,18,43,174,178 %N A099679 Least m such that repunit R_m is a multiple of A045572(n) (i.e., odd numbers not divisible by 5). %H A099679 Charles R Greathouse IV, <a href="/A099679/b099679.txt">Table of n, a(n) for n = 1..10000</a> %H A099679 Patrick de Geest, <a href="http://www.worldofnumbers.com/repunits.htm">Repunits and their prime factors</a> %H A099679 T. Granlund, <a href="http://www.swox.com/gmp/fac10m.txt">Factors of 10^n - 1</a> %H A099679 M. Kamada, <a href="https://stdkmd.net/nrr/repunit/">Factorizations of 11...11(Repunits)</a> %H A099679 Y. Koide, <a href="https://repunit-koide.jimdofree.com/">Factorization of Repunit Numbers</a> %H A099679 P. Yiu, <a href="http://math.fau.edu/yiu/RecreationalMathematics2003.pdf">Factorization of Repunits R_n for n<=50</a>, Appendix Chap. 18.5 pp. 173/360 in 'Recreational Mathematics'. %t A099679 f[n_] := Block[{k = 1}, While[ Mod[(10^k - 1)/9, n] != 0, k++ ]; k]; f /@ Select[ 2Range[ 90] - 1, Mod[ #, 5] != 0 &] (* _Robert G. Wilson v_, Oct 27 2004 *) %o A099679 (PARI) A(n)={ \\ Least m such that n | R_m %o A099679 my(f=factor(n),s=1,t); %o A099679 for(i=1,#f[,1], %o A099679 if(f[i,1]==3, %o A099679 t=3 %o A099679 , %o A099679 t=Mod(10,9*f[i,1]); %o A099679 fordiv(f[i,1]-1,d, %o A099679 if(t^d==1,t=d;break) %o A099679 ) %o A099679 ); %o A099679 t*=f[i,1]^(f[i,2]-1); %o A099679 s=lcm(s,t) %o A099679 ); %o A099679 s %o A099679 }; %o A099679 a(n)=A(10*(n>>2)+[-1, 1, 3, 7][n%4+1]) \\ Least m such that A045572(n) | R_m %o A099679 \\ _Charles R Greathouse IV_, Jul 31 2011 %Y A099679 Cf. A002275, A045572. %K A099679 nonn,easy %O A099679 1,2 %A A099679 _Lekraj Beedassy_, Oct 26 2004 %E A099679 Corrected and extended by _Robert G. Wilson v_, Oct 27 2004