cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099720 Molien series for complete weight enumerators of Euclidean self-dual codes over the Galois ring GR(4,2).

Original entry on oeis.org

1, 1, 1, 3, 9, 9, 19, 45, 145, 260, 604, 1354, 3182, 6298, 13020, 25642, 50388, 92820, 170578, 303424, 533798, 908606, 1530476, 2522074, 4107717, 6553695, 10343897, 16070605, 24706363, 37437245, 56184469, 83316627, 122439255, 177978716, 256574818, 366404272
Offset: 0

Views

Author

G. Nebe (nebe(AT)math.rwth-aachen.de), Nov 10 2004

Keywords

Formula

G.f.: u1/u2 where u1 := f(t) + t^72*f(t^-1), u2 := (1-t)*(1-t^3)*(1-t^4)^5*(1-t^6)^4*(1-t^8)^5 and
f(t) = 1+t^3 + t^4 + 4*t^6 + 15*t^7 + 75*t^8 + 101*t^9 + 274*t^10 + 555*t^11 + 1232*t^12 +2187*t^13 + 4122*t^14 + 7245*t^15 + 12514*t^16 + 20155*t^17 + 31998*t^18 + 48747*t^19 + 72408*t^20 + 103925*t^21 +
144878*t^22 + 197573*t^23 + 261102*t^24 + 338155*t^25 + 425254*t^26 + 524445*t^27 + 629888*t^28 + 740973*t^29 + 851614*t^30 + 957155*t^31 + 1053412*t^32 + 1133809*t^33 + 1196064*t^34 + 1233375*t^35 + 1247150/2*t^36.