cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099730 Array read by antidiagonals. Rows contain odd numbers reaching same odd successor in Collatz function iteration.

This page as a plain text file.
%I A099730 #27 Aug 28 2015 17:51:46
%S A099730 1,5,3,21,13,7,85,53,29,9,341,213,117,37,11,1365,853,469,149,45,15,
%T A099730 5461,3413,1877,597,181,61,17,21845,13653,7509,2389,725,245,69,19,
%U A099730 87381,54613,30037,9557,2901,981,277,77,23
%N A099730 Array read by antidiagonals. Rows contain odd numbers reaching same odd successor in Collatz function iteration.
%C A099730 All numbers that end in 3 will begin with numbers from previous row (for example, 3413 is 341&3). - _Jean-Bernard François_, Sep 09 2013
%C A099730 The sequence is a permutation of the odd positive integers. - _Bob Selcoe_, Jul 26 2015
%F A099730 Let g(n)= floor((n+1)/3), then T(n,k) = 2^(2*(k+1)-1) *(n+g(n)) + (4^(k+1)-1)/3. - _Maon Wenders_, Jul 15 2012
%F A099730 t(n, k) = 4*t(n, k-1) + 1. - _Jean-Bernard François_, Sep 09 2013
%e A099730 t(1, 2) = 53 = 4*13+1, t(2, 5) = 7509 = 4*1877+1.
%e A099730 Array begins:
%e A099730 1 5 21 85 341 1365 5461 21845 87381 ...
%e A099730 3 13 53 213 853 3413 13653 54613 218453 ...
%e A099730 7 29 117 469 1877 7509 30037 120149 480597 ...
%e A099730 9 37 149 597 2389 9557 38229 152917 611669 ...
%e A099730 11 45 181 725 2901 11605 46421 185685 742741 ...
%e A099730 15 61 245 981 3925 15701 62805 251221 1004885 ...
%e A099730 17 69 277 1109 4437 17749 70997 283989 1135957 ...
%e A099730 19 77 309 1237 4949 19797 79189 316757 1267029 ...
%e A099730 ...
%e A099730 Construct array by writing odd numbers in columns, taking first overflow after two steps and then an overflow each fourth step (for each column).
%t A099730 t[n_, k_] := 2^(2*(k + 1) - 1)*(n + Quotient[n + 1, 3]) + (4^(k + 1) - 1)/3; Table[t[n - k, k], {n, 0, 8}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Sep 09 2013, after _Maon Wenders_ *)
%o A099730 (PARI) g(n)=(n+1)\3
%o A099730 T(n,k)=2^(2*(k+1)-1)*(n+g(n))+(4^(k+1)-1)/3
%o A099730 for(i=0,20,for(j=0,10,print1(T(i,j), ", "));print())\\ _Maon Wenders_, Jul 15 2012
%Y A099730 First row = A002450 (except leading zero), second row = A072197, third row = A072261.
%K A099730 nonn,tabl
%O A099730 1,2
%A A099730 Lambert Klasen (lambert.klasen(AT)gmx.de), Nov 09 2004