A099732 Largest order of a solvable subgroup of the symmetric group S_n.
1, 2, 6, 24, 24, 72, 144, 1152, 1296, 2304, 6912, 82944, 82944, 165888, 497664, 7962624, 15925248, 47775744, 191102976, 191102976, 573308928, 1146617856, 13759414272, 13759414272, 27518828544, 82556485632
Offset: 1
Keywords
Examples
a(n) = n! for n<=4 because for those values of n, S_n is solvable and is therefore its own largest solvable subgroup. a(7)=144 because the largest solvable subgroups of S_7 are the intransitive ones which are isomorphic to S_4*S_3.
References
- J. Dixon and B. Mortimer: Permutation groups. Springer 1996, 360p. 3-540-94599-7. DM 84.
Crossrefs
Cf. A000792.
Programs
-
Maple
largsolv := proc(n :: posint) local valtable,curmax,i,j,k,g; valtable:=Array(1..n); if n<=4 return factorial(n); end if; for i from 1 to 4 do valtable[i]:=factorial(i); end do; for j from 5 to n do curmax:=1; for i from 1 to floor(j/2) do curmax:=max(curmax,valtable[i]*valtable[j-i]) end do; for k from 2 to tau(j)-1 do g:=divisors(j)[k]; curmax:=max(curmax,valtable[g]^(j/g)*valtable[j/g]); end do; valtable[j]:=curmax; end do; return valtable[n]; end proc;
Formula
a(n) <= 24^((n-1)/3). Equality holds iff n is a power of 4.
Comments