A099766 Triangle read by rows: T(n,k) = number of unbordered binary words of length n and weight k, n >= 0, 0 <= k <= n.
1, 1, 1, 0, 2, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 0, 2, 4, 4, 2, 0, 0, 2, 4, 8, 4, 2, 0, 0, 2, 6, 12, 12, 6, 2, 0, 0, 2, 6, 18, 22, 18, 6, 2, 0, 0, 2, 8, 24, 40, 40, 24, 8, 2, 0, 0, 2, 8, 32, 60, 80, 60, 32, 8, 2, 0, 0, 2, 10, 40, 92, 140, 140, 92, 40, 10, 2, 0, 0, 2, 10, 50, 128, 232
Offset: 0
Examples
Triangle begins: .1 .1,1 .0,2,0 .0,2,2,0 .0,2,2,2,0 .0,2,4,4,2,0 .0,2,4,8,4,2,0
Links
- T. Harju and D. Nowotka, Counting bordered and primitive words with a fixed weight, TUCS Technical Report, No 630, Turku, November 2004. [This is the triangle U(n,k).]
- T. Harju and D. Nowotka, Counting bordered and primitive words with a fixed weight, Theoret. Comput. Sci. 340 (2005), no. 2, 273-279. [This is the triangle U(n,k).]
Programs
-
Maple
U:=proc(n,k) option remember; if n < 1 then RETURN(0); fi; if n = 1 then RETURN(1); fi; if n > 1 and k = 0 then RETURN(0); fi; if k > 1 and k >= n then RETURN(0); fi; U(n-1,k)+U(n-1,k-1)-E(n,k); end; E:=proc(n,k) option remember; if n mod 2 = 0 and k mod 2 = 0 then U(n/2,k/2) else 0; fi; end;
Formula
See Maple code.