This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099868 #25 Jan 05 2025 19:51:37 %S A099868 3,25,122,585,2803,13430,64347,308305,1477178,7077585,33910747, %T A099868 162476150,778470003,3729873865,17870899322,85624622745,410252214403, %U A099868 1965636449270,9417930031947,45124013710465,216202138520378,1035886678891425,4963231255936747 %N A099868 a(n) = 5*a(n-1) - a(n-2), a(0) = 3, a(1) = 25. %H A099868 Colin Barker, <a href="/A099868/b099868.txt">Table of n, a(n) for n = 0..1000</a> %H A099868 A. F. Horadam, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/9-3/horadam-a.pdf">Pell Identities</a>, Fib. Quart., Vol. 9, No. 3, 1971, pp. 245-252. %H A099868 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A099868 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-1). %F A099868 |2*A099867(n) + a(n) - A003501(n+1)| = 20*A004254(n) %F A099868 G.f.: (3 + 10*x) / (1 - 5*x + x^2). - _Emeric Deutsch_, Dec 03 2004 %F A099868 a(n) = (2^(-1-n)*((5-sqrt(21))^n*(-35+3*sqrt(21)) + (5+sqrt(21))^n*(35+3*sqrt(21)))) / sqrt(21). - _Colin Barker_, Mar 28 2017 %p A099868 a[0]:=3: a[1]:=25: for n from 2 to 30 do a[n]:=5*a[n-1]-a[n-2] od: seq(a[n],n=0..25); %t A099868 LinearRecurrence[{5,-1}, {3,25}, 30] (* _G. C. Greubel_, Nov 20 2018 *) %o A099868 (PARI) Vec((3+10*x) / (1-5*x+x^2) + O(x^30)) \\ _Colin Barker_, Mar 28 2017 %o A099868 (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (3 +10*x)/(1-5*x+x^2))); // _G. C. Greubel_, Nov 20 2018 %o A099868 (Sage) s=((3+10*x)/(1-5*x+x^2)).series(x,30); s.coefficients(x, sparse=False) # _G. C. Greubel_, Nov 20 2018 %o A099868 (GAP) a:=[3,25];; for n in [3..30] do a[n]:=5*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Nov 20 2018 %Y A099868 Cf. A003501, A004254. %K A099868 easy,nonn %O A099868 0,1 %A A099868 _Creighton Dement_, Oct 28 2004