cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099872 Decimal expansion of Sum_{n>=1} ((-1)^(n+1))/(n^log(n)).

This page as a plain text file.
%I A099872 #9 Sep 08 2022 08:45:15
%S A099872 5,8,3,3,0,2,3,2,8,1,7,8,3,1,6,1,4,5,1,6,3,8,8,7,4,7,5,7,8,4,1,5,3,3,
%T A099872 5,9,2,6,0,1,0,0,5,5,8,7,8,7,0,2,8,6,4,4,0,2,3,7,1,2,3,2,6,4,4,0,2,3,
%U A099872 4,7,2,9,9,8,7,5,9,5,9,0,2,3,2,1,2,5,6,2,4,9,5,5,6,5,7,4,2,8,7,6,7,7,3,6,0
%N A099872 Decimal expansion of Sum_{n>=1} ((-1)^(n+1))/(n^log(n)).
%H A099872 G. C. Greubel, <a href="/A099872/b099872.txt">Table of n, a(n) for n = 0..1000</a>
%e A099872 0.58330232817831614516388747578415335926010055878702864402371232644...
%p A099872 evalf(Sum(((-1)^(n+1))/(n^log(n)), n=1..infinity), 120); # _Vaclav Kotesovec_, Mar 01 2016
%t A099872 RealDigits[ NSum[ -(-1)^n/n^Log[n], {n, Infinity}, AccuracyGoal -> 2^10, Compiled -> True, WorkingPrecision -> 2^10, NSumExtraTerms -> 256, NSumTerms -> 512], 10, 111][[1]] (* _Robert G. Wilson v_, Dec 21 2004 *)
%o A099872 (PARI) sumalt(n=1,((-1)^(n+1))/(n^log(n)))
%o A099872 (Magma) SetDefaultRealField(RealField(100)); [(&+[(-1)^(k+1)/k^Log(k): k in [1..1000]])]; // _G. C. Greubel_, Nov 20 2018
%o A099872 (Sage) numerical_approx(sum((-1)^(k+1)/k^log(k) for k in [1..1000]), digits=100)
%K A099872 cons,easy,nonn
%O A099872 0,1
%A A099872 Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 02 2004