This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099885 #13 Feb 16 2025 08:32:55 %S A099885 1,2,6,12,20,40,120,240,272,544,1632,3264,5440,10880,32640,65280, %T A099885 65792,131584,394752,789504,1315840,2631680,7895040,15790080,17895424, %U A099885 35790848,107372544,214745088,357908480,715816960,2147450880,4294901760 %N A099885 Central terms of the rows of the XOR difference triangle of the powers of 2 (A099884) so that a(n) = A099884(n, floor(n/2)). %C A099885 XOR BINOMIAL transform of this sequence is A099886. %H A099885 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rule102.html">Rule 102</a> %F A099885 a(n) = 2^floor((n+1)/2)*A001317(floor(n/2)), where A001317 forms the XOR BINOMIAL transform of the powers of 2. %F A099885 It appears that a(2*n) = A117998(n). - _Peter Bala_, Feb 01 2017 %e A099885 XOR difference triangle of the powers of 2 (A099884) begins: %e A099885 . %e A099885 (central terms) %e A099885 | %e A099885 | %e A099885 1; %e A099885 2, 3; %e A099885 4, 6, 5; %e A099885 8, 12, 10, 15; %e A099885 16, 24, 20, 30, 17; %e A099885 32, 48, 40, 60, 34, 51; %e A099885 64, 96, 80, 120, 68, 102, 85; %e A099885 128, 192, 160, 240, 136, 204, 170, 255; %e A099885 ... %o A099885 (PARI) {a(n)=local(B);B=0;for(i=0,n\2,B=bitxor(B,binomial(n\2,i)%2*2^(n\2-i)));2^((n+1)\2)*B} %o A099885 (Python) %o A099885 def A099885(n): return sum((bool(~(m:=n>>1)&m-k)^1)<<k for k in range((n>>1)+1))<<(n+1>>1) # _Chai Wah Wu_, May 03 2023 %Y A099885 Cf. A099884, A001317, A099886, A117998. %K A099885 nonn,easy %O A099885 0,2 %A A099885 _Paul D. Hanna_, Oct 28 2004