cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099885 Central terms of the rows of the XOR difference triangle of the powers of 2 (A099884) so that a(n) = A099884(n, floor(n/2)).

This page as a plain text file.
%I A099885 #13 Feb 16 2025 08:32:55
%S A099885 1,2,6,12,20,40,120,240,272,544,1632,3264,5440,10880,32640,65280,
%T A099885 65792,131584,394752,789504,1315840,2631680,7895040,15790080,17895424,
%U A099885 35790848,107372544,214745088,357908480,715816960,2147450880,4294901760
%N A099885 Central terms of the rows of the XOR difference triangle of the powers of 2 (A099884) so that a(n) = A099884(n, floor(n/2)).
%C A099885 XOR BINOMIAL transform of this sequence is A099886.
%H A099885 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rule102.html">Rule 102</a>
%F A099885 a(n) = 2^floor((n+1)/2)*A001317(floor(n/2)), where A001317 forms the XOR BINOMIAL transform of the powers of 2.
%F A099885 It appears that a(2*n) = A117998(n). - _Peter Bala_, Feb 01 2017
%e A099885 XOR difference triangle of the powers of 2 (A099884) begins:
%e A099885 .
%e A099885             (central terms)
%e A099885                    |
%e A099885                    |
%e A099885                    1;
%e A099885                    2,   3;
%e A099885               4,   6,   5;
%e A099885               8,  12,  10,  15;
%e A099885         16,  24,  20,  30,  17;
%e A099885         32,  48,  40,  60,  34,  51;
%e A099885    64,  96,  80, 120,  68, 102,  85;
%e A099885   128, 192, 160, 240, 136, 204, 170, 255;
%e A099885   ...
%o A099885 (PARI) {a(n)=local(B);B=0;for(i=0,n\2,B=bitxor(B,binomial(n\2,i)%2*2^(n\2-i)));2^((n+1)\2)*B}
%o A099885 (Python)
%o A099885 def A099885(n): return sum((bool(~(m:=n>>1)&m-k)^1)<<k for k in range((n>>1)+1))<<(n+1>>1) # _Chai Wah Wu_, May 03 2023
%Y A099885 Cf. A099884, A001317, A099886, A117998.
%K A099885 nonn,easy
%O A099885 0,2
%A A099885 _Paul D. Hanna_, Oct 28 2004