This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099916 #7 Jun 13 2015 00:51:34 %S A099916 1,0,2,1,1,2,0,1,0,-1,0,-2,-1,-1,-2,0,-1,0,1,0,2,1,1,2,0,1,0,-1,0,-2, %T A099916 -1,-1,-2,0,-1,0,1,0,2,1,1,2,0,1,0,-1,0,-2,-1,-1,-2,0,-1,0,1,0,2,1,1, %U A099916 2,0,1,0,-1,0,-2,-1,-1,-2,0,-1,0,1,0,2,1,1,2,0,1,0,-1,0,-2,-1,-1,-2,0,-1,0,1,0,2,1,1,2,0,1,0,-1,0 %N A099916 Expansion of (1+x^2)^2/(1-x^3+x^6). %C A099916 The denominator is the 18th cyclotomic polynomial. The g.f. is a Chebyshev transform of that of A052931, by the Chebyshev mapping g(x)->(1/(1+x^2))g(x/(1+x^2)). The reciprocal of the 18th cyclotomic polynomial A014027 is given by sum{k=0..n, A099916(n-k)(k/2+1)(-1)^(k/2)(1+(-1)^k)/2}. %H A099916 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1,0,0,-1) %F A099916 a(n)=sum{k=0..floor(n/2), C(n-k, k)(-1)^k*sum{j=0..n-2k, C(j, n-2k-2j)3^(3j-n+2k)}}; a(n)=sum{k=0..n, A014027(n-k)C(2, k/2)(1+(-1)^k)/2}. %K A099916 easy,sign %O A099916 0,3 %A A099916 _Paul Barry_, Oct 30 2004