This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099924 #36 Nov 14 2024 15:16:57 %S A099924 4,4,13,22,45,82,152,274,491,870,1531,2676,4652,8048,13865,23798, %T A099924 40713,69446,118144,200510,339559,573894,968183,1630632,2742100, %U A099924 4604572,7721797,12933334,21637221,36159610,60367976,100687786 %N A099924 Self-convolution of Lucas numbers. %D A099924 A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 57. %H A099924 Michael De Vlieger, <a href="/A099924/b099924.txt">Table of n, a(n) for n = 0..4767</a> %H A099924 É. Czabarka, R. Flórez, and L. Junes, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Florez/florez12.html">A Discrete Convolution on the Generalized Hosoya Triangle</a>, Journal of Integer Sequences, 18 (2015), #15.1.6. %H A099924 Sergio Falcon, <a href="https://doi.org/10.7546/nntdm.2020.26.3.96-106">Half self-convolution of the k-Fibonacci sequence</a>, Notes on Number Theory and Discrete Mathematics (2020) Vol. 26, No. 3, 96-106. %H A099924 Tamás Szakács, <a href="https://doi.org/10.1515/cm-2017-0011">Convolution of second order linear recursive sequences. II.</a> Commun. Math. 25, No. 2, 137-148 (2017). See remark 4. %H A099924 Tamás Szakács, <a href="https://hdl.handle.net/2437/381856">Linear recursive sequences and factorials</a>, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 37. %H A099924 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-2,-1). %F A099924 a(n) = (n+1)*L(n) + 2F(n+1) = Sum_{k=0..n} L(k)*L(n-k). %F A099924 G.f.: (2-x)^2/(1-x-x^2)^2, corrected Aug 23 2022 %F A099924 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4), a(0)=4, a(1)=4, a(2)=13, a(3)=22. - _Harvey P. Dale_, Mar 06 2012 %F A099924 a(n) = 2*A099920(n+1)-A099920(n). - _R. J. Mathar_, Aug 23 2022 %t A099924 Table[Sum[LucasL[k]LucasL[n-k],{k,0,n}],{n,0,40}] (* or *) LinearRecurrence[ {2,1,-2,-1},{4,4,13,22},40] (* _Harvey P. Dale_, Mar 06 2012 *) %Y A099924 Cf. A001629, A000032. Bisection: A203573 (even), 2*A203574 (odd). %K A099924 nonn,easy %O A099924 0,1 %A A099924 _Ralf Stephan_, Nov 01 2004