cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099938 Consider the sequence of circles C0, C1, C2, C3 ..., where C0 is a half-circle of radius 1. C1 is the largest circle that fits into C0 and has radius 1/2. C(n+1) is the largest circle that fits inside C0 but outside C(n), etc. Sequence gives the curvatures (reciprocals of the radii) of the circles.

This page as a plain text file.
%I A099938 #27 Jun 10 2016 13:47:18
%S A099938 2,4,18,100,578,3364,19602,114244,665858,3880900,22619538,131836324,
%T A099938 768398402,4478554084,26102926098,152139002500,886731088898,
%U A099938 5168247530884,30122754096402,175568277047524,1023286908188738,5964153172084900,34761632124320658
%N A099938 Consider the sequence of circles C0, C1, C2, C3 ..., where C0 is a half-circle of radius 1. C1 is the largest circle that fits into C0 and has radius 1/2. C(n+1) is the largest circle that fits inside C0 but outside C(n), etc. Sequence gives the curvatures (reciprocals of the radii) of the circles.
%C A099938 The numbers a(2), a(4), a(6) etc. are squares and a(1), a(3), a(5) ... are twice squares. Furthermore, a(1) - 2, a(3) - 2, a(5) - 2 etc. are squares and a(2) - 2, a(4) - 2, a(6) - 2 etc. are twice square.
%C A099938 C(n) is centered at (x(n), y(n)), where x(n) = sqrt(1 - 2/a(n)) and y(n) = 1/a(n). - _David Wasserman_, Feb 28 2008
%C A099938 C(n) is tangent to C0 because sqrt(x(n)^2 + y(n)^2) + y(n) = 1 and C(n) is tangent to C(n+1) because sqrt[(x(n+1) - x(n))^2 + (y(n+1) - y(n))^2] = y(n) + y(n+1). - _David Wasserman_, Feb 28 2008
%C A099938 a(n+1)/a(n) converges to 3 + sqrt(8). - _David Wasserman_, Feb 28 2008
%H A099938 Colin Barker, <a href="/A099938/b099938.txt">Table of n, a(n) for n = 1..1000</a>
%H A099938 Francisco Javier Garcia Capitan Blog, <a href="http://garciacapitan.blogspot.com.es/2016/06/about-a099938-sequence.html">About the A099938 sequence</a>
%H A099938 David Wasserman, <a href="/A099938/a099938.jpg">Illustration of this sequence</a>
%H A099938 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-7,1).
%F A099938 a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). G.f.: -2*x*(2*x^2-5*x+1) / ((x-1)*(x^2-6*x+1)). - _Colin Barker_, Jan 07 2013
%F A099938 a(n) = 1/2*(2 + (3 - 2*sqrt(2))^n*(3 + 2*sqrt(2)) + (3 - 2*sqrt(2))*(3 + 2*sqrt(2))^n). - _Colin Barker_, Jun 05 2016
%t A099938 Table[FullSimplify[2 Cosh[n ArcSinh[1]]^2], {n, 0, 9}] (* _Francisco Javier García Capitán_, Jun 05 2016 *)
%o A099938 (PARI) Vec(-2*x*(2*x^2-5*x+1)/((x-1)*(x^2-6*x+1)) + O(x^30)) \\ _Colin Barker_, Jun 05 2016
%Y A099938 Equals 2 * A055997(n-1).
%K A099938 nonn,easy
%O A099938 1,1
%A A099938 Hartmut Neubauer (hartmut.f.neubauer(AT)t-online.de), Nov 12 2004
%E A099938 More terms from _David Wasserman_, Feb 28 2008