This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099948 #16 Nov 24 2022 04:29:54 %S A099948 1,6,25,90,302,994,3487,15210,92489,713988,5979480,50184316,412595913, %T A099948 3317961318,26241631409,205918294518,1622545217510,13045429410974, %U A099948 109152638729439,969395726250226,9255388478615017,94973500733767432,1034488089509527120 %N A099948 Number of partitions of n such that the number of blocks is congruent to 3 mod 4. %H A099948 Alois P. Heinz, <a href="/A099948/b099948.txt">Table of n, a(n) for n = 3..500</a> %H A099948 M. Klazar, <a href="http://dx.doi.org/10.1016/S0097-3165(03)00014-1">Bell numbers, their relatives and algebraic differential equations</a>, J. Combin. Theory, A 102 (2003), 63-87. %F A099948 G.f.: sum(x^k/[(1-x)(1-2x)...(1-kx)], k=3 (mod 4)). - _Emeric Deutsch_, Dec 15 2004 %e A099948 a(11)=92489 because stirling2(11,3)+stirling2(11,7)+stirling2(11,11)=92489. %p A099948 seq(sum(stirling2(n,3+4*k),k=0..(n-3)/4),n=3..26); # _Emeric Deutsch_, Dec 15 2004 %p A099948 # second Maple program: %p A099948 with(combinat): %p A099948 b:= proc(n, i, m) option remember; `if`(n=0, `if`(m=3, 1, 0), %p A099948 `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!* %p A099948 b(n-i*j, i-1, irem(m+j, 4)), j=0..n/i))) %p A099948 end: %p A099948 a:= n-> b(n$2, 0): %p A099948 seq(a(n), n=3..30); # _Alois P. Heinz_, Sep 17 2015 %t A099948 Table[Sum[StirlingS2[n, 3+4*k], {k, 0, (n-3)/4}], {n, 3, 26}] (* _Jean-François Alcover_, Feb 18 2016, after _Emeric Deutsch_ *) %Y A099948 Cf. A143817, A358499. %K A099948 nonn,easy %O A099948 3,2 %A A099948 _N. J. A. Sloane_, Nov 12 2004 %E A099948 More terms from _Emeric Deutsch_, Dec 15 2004