This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099952 #27 Jan 08 2025 10:11:40 %S A099952 1,1,1,3,16,91,595 %N A099952 Number of Wilf classes in S_n. %D A099952 Z. Stankova and J. West, A new class of Wilf-equivalent permutations, J. Algeb. Combin., 15 (2002), 271-290. %H A099952 A. M. Baxter, <a href="https://pdfs.semanticscholar.org/2c5d/79e361d3aecb25c380402144177ad7cd9dc8.pdf">Algorithms for Permutation Statistics</a>, Ph. D. Dissertation, Rutgers University, May 2011. %H A099952 A. M. Baxter and A. D. Jaggard, <a href="http://arxiv.org/abs/1106.3653">Pattern avoidance by even permutations</a>, arXiv preprint arXiv:1106.3653, 2011 %H A099952 Zvezdelina Stankova-Frenkel and Julian West, <a href="http://arxiv.org/abs/math/0103152">A new class of Wilf-equivalent permutations</a>, arXiv:math/0103152. See Fig. 9. %Y A099952 Representatives for the three Wilf classes in S_4 are A005802, A022558, A061552. - _N. J. A. Sloane_, Mar 15 2015 %Y A099952 Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208. - _N. J. A. Sloane_, Mar 19 2015 %K A099952 nonn,more %O A099952 1,4 %A A099952 _N. J. A. Sloane_, Nov 12 2004