cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099960 An interleaving of the Genocchi numbers of the first and second kind, A110501 and A005439.

This page as a plain text file.
%I A099960 #41 Aug 03 2021 19:05:00
%S A099960 1,1,1,1,2,3,8,17,56,155,608,2073,9440,38227,198272,929569,5410688,
%T A099960 28820619,186043904,1109652905,7867739648,51943281731,401293838336,
%U A099960 2905151042481,24290513745920,191329672483963,1721379917619200,14655626154768697,141174819474169856
%N A099960 An interleaving of the Genocchi numbers of the first and second kind, A110501 and A005439.
%C A099960 First column (also row sums) of triangle in A099959.
%C A099960 Number of ascent sequences of length n without level steps and with alternating ascents and descents. a(6) = 8: 010101, 010102, 010103, 010201, 010202, 010203, 010212, 010213. - _Alois P. Heinz_, Oct 27 2017
%D A099960 Donald E. Knuth, The Art of Computer Programming, Vol. 4, fascicle 1, section 7.1.4, p. 220, answer to exercise 174, Addison-Wesley, 2009.
%H A099960 Alois P. Heinz, <a href="/A099960/b099960.txt">Table of n, a(n) for n = 0..500</a>
%H A099960 Catalin Zara, <a href="http://arxiv.org/abs/1304.5798">Cardinality of l_1-Segments and Genocchi Numbers</a>, arXiv:1304.5798 [math.CO] (2013)
%F A099960 a(n) ~ 2^(5/2) * n^(n+3/2) / (Pi^(n+1/2) * exp(n)). - _Vaclav Kotesovec_, Sep 10 2014
%p A099960 with(linalg):rev:=proc(a) local n, p; n:=vectdim(a): p:=i->a[n+1-i]: vector(n,p) end: ps:=proc(a) local n, q; n:=vectdim(a): q:=i->sum(a[j],j=1..i): vector(n,q) end: pss:=proc(a) local n, q; n:=vectdim(a): q:=proc(i) if i<=n then sum(a[j],j=1..i) else sum(a[j],j=1..n) fi end: vector(n+1,q) end: R[0]:=vector(1,1): for n from 1 to 30 do if n mod 2 = 1 then R[n]:=ps(rev(R[n-1])) else R[n]:=pss(rev(R[n-1])) fi od: seq(R[n][1],n=0..30); # _Emeric Deutsch_
%t A099960 g1 = Table[2*(4^n-1)*BernoulliB[2*n] // Abs, {n, 0, 13}]; g2 = Table[2*(-1)^(n-2)*Sum[Binomial[n, k]*(1-2^(n+k+1))*BernoulliB[n+k+1], {k, 0, n}], {n, 0, 13}]; Riffle[g1, g2] // Rest (* _Jean-François Alcover_, May 23 2013 *)
%o A099960 (Sage) # Algorithm of L. Seidel (1877)
%o A099960 def A099960_list(n) :
%o A099960     D = [0]*(n//2+3); D[1] = 1
%o A099960     R = []; b = True; h = 1
%o A099960     for i in (1..n) :
%o A099960         if b :
%o A099960             for k in range(h,0,-1) : D[k] += D[k+1]
%o A099960             R.append(D[1]); h += 1
%o A099960         else :
%o A099960             for k in range(1,h, 1) : D[k] += D[k-1]
%o A099960             R.append(D[h-1])
%o A099960         b = not b
%o A099960     return R
%o A099960 A099960_list(27)  # _Peter Luschny_, Apr 30 2012
%Y A099960 Cf. A022493, A099959, A001469, A005439, A138265, A294281.
%K A099960 nonn,easy
%O A099960 0,5
%A A099960 _N. J. A. Sloane_, Nov 13 2004
%E A099960 More terms from _Emeric Deutsch_, Nov 16 2004