This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099980 #14 Oct 23 2024 11:42:49 %S A099980 4,9,14,21,25,33,35,39,49,55,58,65,74,82,86,91,94,106,115,119,122,129, %T A099980 134,142,145,155,159,166,177,183,187,201,203,206,213,215,218,221,235, %U A099980 247,253,259,265,274,287,291,298,301,303,309,319,323,327,334,339,346 %N A099980 Bisection of A001358. %p A099980 P:=[seq(ithprime(n),n=1..100)]: B:={seq(seq(P[i]*P[j],j=1..100),i=1..100)}:C:={seq(B[k],k=1..140)}: seq(C[2*j-1],j=1..70); # _Emeric Deutsch_, Dec 14 2004 %o A099980 (Python) %o A099980 from math import isqrt %o A099980 from sympy import primepi, primerange %o A099980 def A099980(n): %o A099980 def bisection(f,kmin=0,kmax=1): %o A099980 while f(kmax) > kmax: kmax <<= 1 %o A099980 while kmax-kmin > 1: %o A099980 kmid = kmax+kmin>>1 %o A099980 if f(kmid) <= kmid: %o A099980 kmax = kmid %o A099980 else: %o A099980 kmin = kmid %o A099980 return kmax %o A099980 def f(x): return int((n<<1)+1+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1))) %o A099980 return bisection(f,(n<<1)+1,(n<<1)+1) # _Chai Wah Wu_, Oct 23 2024 %Y A099980 Cf. A001358. %K A099980 nonn,easy %O A099980 0,1 %A A099980 _N. J. A. Sloane_, Nov 19 2004 %E A099980 More terms from _Emeric Deutsch_, Dec 14 2004