A099984 Bisection of A007947.
1, 3, 5, 7, 3, 11, 13, 15, 17, 19, 21, 23, 5, 3, 29, 31, 33, 35, 37, 39, 41, 43, 15, 47, 7, 51, 53, 55, 57, 59, 61, 21, 65, 67, 69, 71, 73, 15, 77, 79, 3, 83, 85, 87, 89, 91, 93, 95, 97, 33, 101, 103, 105, 107, 109, 111, 113, 115, 39, 119, 11, 123, 5, 127, 129, 131, 133, 15, 137
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): A007947 := proc(n) local i,t1,t2; t1 :=ifactors(n)[2]; t2 := mul(t1[i][1],i=1..nops(t1)); end: seq(A007947(2*n-1),n=1..78); # Emeric Deutsch, Dec 15 2004
-
Mathematica
a[n_] := Times @@ (First /@ FactorInteger[2*n-1]); Array[a, 100] (* Amiram Eldar, Nov 19 2022*)
-
PARI
a(n) = factorback(factorint(2*n-1)[, 1]); \\ Amiram Eldar, Nov 19 2022
Formula
From Amiram Eldar, Nov 19 2022: (Start)
a(n) = A007947(2*n-1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (6/5) * Product_{p prime} (1 - 1/(p*(p+1))) = (6/5) * A065463 = 0.8453306... . (End)
Extensions
More terms from Emeric Deutsch, Dec 15 2004
Offset corrected by Amiram Eldar, Nov 19 2022