cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A099996 a(n) = lcm{1, 2, ..., 2*n}.

This page as a plain text file.
%I A099996 #31 May 06 2023 04:22:59
%S A099996 1,2,12,60,840,2520,27720,360360,720720,12252240,232792560,232792560,
%T A099996 5354228880,26771144400,80313433200,2329089562800,144403552893600,
%U A099996 144403552893600,144403552893600,5342931457063200,5342931457063200
%N A099996 a(n) = lcm{1, 2, ..., 2*n}.
%C A099996 The prime number theorem implies that a(n) = e^(2n(1+o(1))) as n -> infinity. In other words, log(a(n))/n -> 2 as n -> infinity. (Sondow)
%H A099996 Reinhard Zumkeller, <a href="/A099996/b099996.txt">Table of n, a(n) for n = 0..1000</a>
%H A099996 Jonathan Sondow, <a href="https://doi.org/10.1090/S0002-9939-03-07081-3">Criteria for irrationality of Euler's constant</a>, Proc. Amer. Math. Soc. 131 (2003) 3335-3344.
%H A099996 <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>
%e A099996 The LCM of {1,2,3,4,5,6} is 60 and 6 = 2*3, so a(3) = 60.
%p A099996 A099996 := proc(n)
%p A099996         lcm(seq(i,i=1..2*n)) ;
%p A099996 end proc: # _R. J. Mathar_, Dec 14 2011
%o A099996 (Haskell)
%o A099996 a099996 = foldl lcm 1 . enumFromTo 2 . (* 2)
%o A099996 -- _Reinhard Zumkeller_, Feb 11 2014
%o A099996 (PARI) a(n) = lcm(vector(2*n, k, k)); \\ _Michel Marcus_, Mar 18 2018
%Y A099996 Bisection of A003418.
%Y A099996 Cf. A076100, A093880.
%Y A099996 Cf. A051173.
%K A099996 easy,nonn
%O A099996 0,2
%A A099996 _N. J. A. Sloane_, Nov 20 2004
%E A099996 More terms from _Jonathan Sondow_, Jan 17 2005