This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099997 #12 Aug 14 2024 01:50:42 %S A099997 1,8,16,27,36,64,100,125,144,196,225,256,324,361,441,512,576,676,784, %T A099997 900,1000,1089,1225,1331,1444,1600,1728,1849,2025,2116,2197,2304,2500, %U A099997 2704,2809,3025,3136,3364,3481,3721,3969,4225,4489,4761,4913,5184,5476 %N A099997 Bisection of A001597. %t A099997 t = Union@ Flatten@ Join[{1}, Table[ n^i, {n, 2, Sqrt[5775]}, {i, 2, Log[n, 5775]}]]; t[[2# - 1]] & /@ Range@(Length@t/2) (* _Robert G. Wilson v_ *) %o A099997 (Python) %o A099997 from sympy import mobius, integer_nthroot %o A099997 def A099997(n): %o A099997 def f(x): return int((n<<1)-3+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) %o A099997 kmin, kmax = 1,2 %o A099997 while f(kmax) >= kmax: %o A099997 kmax <<= 1 %o A099997 while True: %o A099997 kmid = kmax+kmin>>1 %o A099997 if f(kmid) < kmid: %o A099997 kmax = kmid %o A099997 else: %o A099997 kmin = kmid %o A099997 if kmax-kmin <= 1: %o A099997 break %o A099997 return kmax # _Chai Wah Wu_, Aug 14 2024 %K A099997 nonn,easy %O A099997 1,2 %A A099997 _N. J. A. Sloane_, Nov 20 2004 %E A099997 More terms from _Robert G. Wilson v_, Dec 14 2005