This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A099998 #11 Aug 14 2024 01:50:27 %S A099998 4,9,25,32,49,81,121,128,169,216,243,289,343,400,484,529,625,729,841, %T A099998 961,1024,1156,1296,1369,1521,1681,1764,1936,2048,2187,2209,2401,2601, %U A099998 2744,2916,3125,3249,3375,3600,3844,4096,4356,4624,4900,5041,5329,5625,5832 %N A099998 Bisection of A001597. %t A099998 t = Union@ Flatten@ Table[ n^i, {n, 2, Sqrt[6083]}, {i, 2, Log[n, 6083]}]; t[[2# - 1]] & /@ Range@(Length@t/2) %o A099998 (Python) %o A099998 from sympy import mobius, integer_nthroot %o A099998 def A099998(n): %o A099998 def f(x): return int((n<<1)-2+x+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) %o A099998 kmin, kmax = 1,2 %o A099998 while f(kmax) >= kmax: %o A099998 kmax <<= 1 %o A099998 while True: %o A099998 kmid = kmax+kmin>>1 %o A099998 if f(kmid) < kmid: %o A099998 kmax = kmid %o A099998 else: %o A099998 kmin = kmid %o A099998 if kmax-kmin <= 1: %o A099998 break %o A099998 return kmax # _Chai Wah Wu_, Aug 14 2024 %K A099998 nonn,easy %O A099998 1,1 %A A099998 _N. J. A. Sloane_, Nov 20 2004 %E A099998 More terms from _Robert G. Wilson v_, Dec 14 2005