cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100060 a(n)=1 if the n-th second difference of the imaginary parts of the nontrivial zeros of the Riemann zeta function is positive, otherwise a(n)=0.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 31 2004

Keywords

Comments

Differences between zeta function gaps: increases are 1 and decreases are 0.
The ratios of the numbers of 0's to the number of 1's in the first 10^n differences are 0/1, 5/5, 50/50, 493/507, 4998/5002, 49949/50049, ...

Examples

			The first few positive t values of the zeros 1/2+i*t are (14.13..., 21.02..., 25.01..., 30.42..., 32.93..., 37.58..., 40.91..., 43.32...).
First differences are (6.88..., 3.98..., 5.41..., 2.51..., 4.65..., 3.33..., 2.40...).
Second differences are (-2.89..., 1.42..., -2.90..., 2.14..., -1.31..., -0.92...) which yields (0, 1, 0, 1, 0, 0, ...).
		

Crossrefs

Programs

  • Mathematica
    zz = { (* the list of values in the link *) }; yy = Drop[zz, 1] - Drop[zz, -1]; Join[{1}, Table[ If[ yy[[n + 1]] > yy[[n]], 1, 0], {n, 104}]] (* Or *)
    zz = { (* the list of values in the link *) }; yy = Drop[zz, 1] - Drop[zz, -1]; xx = Drop[yy, 1] - Drop[yy, -1]; Join[{1}, Table[ If[ xx[[n]] > 0, 1, 0], {n, 104}]] (* Robert G. Wilson v, Jan 14 2005 *)
    Flatten[{1, (Sign[Differences[Differences[Im[ZetaZero[Range[106]]]]]] + 1)/2}] (* Mats Granvik, Jul 23 2015 *)

Extensions

Corrected and extended by Robert G. Wilson v, Jan 13 2005
Edited by M. F. Hasler, Jul 27 2015