cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100067 a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*2^(n-2*k).

This page as a plain text file.
%I A100067 #31 Jan 15 2025 06:36:51
%S A100067 1,2,6,14,38,92,240,590,1510,3740,9476,23564,59372,147968,371636,
%T A100067 927374,2324870,5805740,14538660,36322340,90898228,227153192,
%U A100067 568235696,1420236524,3551943388,8878506392,22201466280,55498465400,138766221800,346895496200,867316299260,2168213189390
%N A100067 a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*2^(n-2*k).
%C A100067 An inverse Chebyshev transform of x/(1-2*x), where the Chebyshev transform of g(x) is ((1-x^2)/(1+x^2))*g(x/(1+x^2)) and the inverse transform maps a g.f. A(x) to (1/sqrt(1-4*x^2))*A(x*c(x^2)) where c(x) is the g.f. of the Catalan numbers A000108. In general, Sum_{k=0..floor(n/2)} binomial(n,k) * r^(n-2*k) has g.f. 2*x/(sqrt(1-4*x^2)*(r*sqrt(1-4*x^2) + 2*x - r)). - corrected by _Vaclav Kotesovec_, Dec 06 2012
%C A100067 Generally (for r>1), a(n) ~ (r + 1/r)^n. - _Vaclav Kotesovec_, Dec 06 2012
%C A100067 Hankel transform is A088138(n+1). - _Paul Barry_, Jun 16 2009
%H A100067 Vincenzo Librandi, <a href="/A100067/b100067.txt">Table of n, a(n) for n = 0..1000</a>
%F A100067 G.f.: x/(sqrt(1-4*x^2)*(sqrt(1-4*x^2)+x-1)).
%F A100067 a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*2^(n-2*k).
%F A100067 a(n) = Sum_{k=0..n} binomial(n, (n-k)/2)*(1 + (-1)^(n-k))*2^k/2.
%F A100067 Recurrence: 2*n*(3*n-7)*a(n) = (15*n^2 - 35*n + 8)*a(n-1) + 4*(6*n^2 - 20*n + 11)*a(n-2) - 20*(n-2)*(3*n-4)*a(n-3). - _Vaclav Kotesovec_, Dec 06 2012
%F A100067 a(n) ~ 5^n/2^n. - _Vaclav Kotesovec_, Dec 06 2012
%t A100067 CoefficientList[Series[x/(Sqrt[1-4*x^2]*(Sqrt[1-4*x^2]+x-1)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Dec 06 2012 *)
%o A100067 (PARI) my(x='x+O('x^66)); Vec(x/(sqrt(1-4*x^2)*(sqrt(1-4*x^2)+x-1))) \\ _Joerg Arndt_, May 12 2013
%o A100067 (Magma) m:=2; [(&+[Binomial(n,k)*m^(n-2*k): k in [0..Floor(n/2)]]): n in [0..40]]; // _G. C. Greubel_, Jun 08 2022
%o A100067 (SageMath) m=2; [sum(binomial(n,k)*m^(n-2*k) for k in (0..n//2)) for n in (0..40)] # _G. C. Greubel_, Jun 08 2022
%Y A100067 Cf. A027306, A100068, A100069.
%K A100067 easy,nonn
%O A100067 0,2
%A A100067 _Paul Barry_, Nov 02 2004