cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100092 Number of n-celled polyominoes with minimum perimeter.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 6, 1, 1, 11, 4, 2, 1, 11, 6, 1, 1, 28, 11, 4, 2, 1, 35, 11, 6, 1, 1, 65, 28, 11, 4, 2, 1, 73, 35, 11, 6, 1, 1, 147, 65, 28, 11, 4, 2, 1, 182, 73, 35, 11, 6, 1, 1, 321, 147, 65, 28, 11, 4, 2, 1, 374, 182, 73, 35, 11, 6, 1, 1, 678, 321, 147, 65, 28, 11, 4, 2, 1
Offset: 0

Views

Author

Sascha Kurz, Nov 03 2004

Keywords

Comments

An n-celled polyomino has minimum perimeter A027709(n) = 2*ceiling(2*sqrt(n)). - Dmitry Kamenetsky, Feb 27 2017

Examples

			a(9) = 1 because the 3 X 3 square is the unique polyomino with minimum perimeter.
		

Crossrefs

Cf. A027709, A100093, A100094, left nonzero term in row n of A342243.

Programs

  • Mathematica
    (* Warning: some local maxima are precomputed from A100094. *)
    A100094 = {2, 4, 11, 28, 65, 147, 321, 678, 1382, 2738, 5289 (* extend if needed *)};
    amax = Last[A100094]; nmax = 144;
    S[x_] := 1 + Sum[ x^(2*n + 1)*Product[ (x^(2*k - 1) - 1), {k, n}], {n, 0, nmax}] + O[x]^nmax;
    A[x_] = Product[1/(1 - x^k), {k, 1, nmax}] + O[x]^nmax // Normal;
    R[x_] := 1/4 (A[x]^4 + 3A[x^2]^2) + O[x]^nmax;
    Q[x_] := 1/8 (A[x]^4 + 3A[x^2]^2 + 2S[x]^2 A[x^2] + 2A[x^4]) + O[x]^nmax;
    r[k_] := SeriesCoefficient[R[x], {x, 0, k}];
    q[k_] := SeriesCoefficient[Q[x], {x, 0, k}];
    e[n_] := Module[{s, w}, s = Floor[Sqrt[n]]; a94Q[k_] := IntegerQ[w = Sqrt[k + n] - k] && w > 0; Which[Evaluate[Sequence @@ Flatten[Table[{a94Q[k], A100094[[k]]}, {k, 3, Length[A100094]}]]], n == s^2, 1, IntegerQ[t = n - s^2] && 0 < t < s, Sum[r[s - c - c^2 - t], {c, 0, Floor[-1/2 + (1/2)* Sqrt[1 + 4 s - 4 t]]}], n == s^2 + s, 1, IntegerQ[t = n - s^2 - s] && 0 < t <= s, q[s + 1 - t] + Sum[r[s + 1 - c^2 - t], {c, 1, Floor[Sqrt[s + 1 - t]]}], True, Print["error n = ", n]]];
    Select[Table[e[n], {n, 0, nmax}], # <= amax&] (* Jean-François Alcover, Jul 20 2018 *)

Formula

It seems that for m >= 1, 0 <= k <= m-1, we have a(m^2-k) = a(k^2+k+1) = A100094(k) and a(m^2+m-k) = a((k+1)^2+1) = A100093(k+1). If this is true, then a(n) = 1 if and only if n is of the form m^2, m^2 + m - 1 or m^2 + m. - Jianing Song, Aug 10 2021

Extensions

Offset changed to 0 by N. J. A. Sloane, Mar 19 2017