A100092 Number of n-celled polyominoes with minimum perimeter.
1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 6, 1, 1, 11, 4, 2, 1, 11, 6, 1, 1, 28, 11, 4, 2, 1, 35, 11, 6, 1, 1, 65, 28, 11, 4, 2, 1, 73, 35, 11, 6, 1, 1, 147, 65, 28, 11, 4, 2, 1, 182, 73, 35, 11, 6, 1, 1, 321, 147, 65, 28, 11, 4, 2, 1, 374, 182, 73, 35, 11, 6, 1, 1, 678, 321, 147, 65, 28, 11, 4, 2, 1
Offset: 0
Keywords
Examples
a(9) = 1 because the 3 X 3 square is the unique polyomino with minimum perimeter.
Links
- Joerg Arndt, Table of n, a(n) for n = 0..144
- Sascha Kurz, Counting polyominoes with minimum perimeter, submitted to Ars Combinatoria
- Sascha Kurz, Counting polyominoes with minimum perimeter, arXiv:math/0506428 [math.CO], 2005-2015.
- Kival Ngaokrajang, Illustration of initial terms ["A275966" should be changed to "A100092"]
- Piotr Pikul, Tightest Arrangements of All Different Nets of a Cube, Math. Mag. (2024).
Programs
-
Mathematica
(* Warning: some local maxima are precomputed from A100094. *) A100094 = {2, 4, 11, 28, 65, 147, 321, 678, 1382, 2738, 5289 (* extend if needed *)}; amax = Last[A100094]; nmax = 144; S[x_] := 1 + Sum[ x^(2*n + 1)*Product[ (x^(2*k - 1) - 1), {k, n}], {n, 0, nmax}] + O[x]^nmax; A[x_] = Product[1/(1 - x^k), {k, 1, nmax}] + O[x]^nmax // Normal; R[x_] := 1/4 (A[x]^4 + 3A[x^2]^2) + O[x]^nmax; Q[x_] := 1/8 (A[x]^4 + 3A[x^2]^2 + 2S[x]^2 A[x^2] + 2A[x^4]) + O[x]^nmax; r[k_] := SeriesCoefficient[R[x], {x, 0, k}]; q[k_] := SeriesCoefficient[Q[x], {x, 0, k}]; e[n_] := Module[{s, w}, s = Floor[Sqrt[n]]; a94Q[k_] := IntegerQ[w = Sqrt[k + n] - k] && w > 0; Which[Evaluate[Sequence @@ Flatten[Table[{a94Q[k], A100094[[k]]}, {k, 3, Length[A100094]}]]], n == s^2, 1, IntegerQ[t = n - s^2] && 0 < t < s, Sum[r[s - c - c^2 - t], {c, 0, Floor[-1/2 + (1/2)* Sqrt[1 + 4 s - 4 t]]}], n == s^2 + s, 1, IntegerQ[t = n - s^2 - s] && 0 < t <= s, q[s + 1 - t] + Sum[r[s + 1 - c^2 - t], {c, 1, Floor[Sqrt[s + 1 - t]]}], True, Print["error n = ", n]]]; Select[Table[e[n], {n, 0, nmax}], # <= amax&] (* Jean-François Alcover, Jul 20 2018 *)
Formula
It seems that for m >= 1, 0 <= k <= m-1, we have a(m^2-k) = a(k^2+k+1) = A100094(k) and a(m^2+m-k) = a((k+1)^2+1) = A100093(k+1). If this is true, then a(n) = 1 if and only if n is of the form m^2, m^2 + m - 1 or m^2 + m. - Jianing Song, Aug 10 2021
Extensions
Offset changed to 0 by N. J. A. Sloane, Mar 19 2017
Comments