cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100099 An inverse Chebyshev transform of x/(1-2x).

Original entry on oeis.org

0, 1, 2, 7, 16, 46, 110, 295, 720, 1870, 4612, 11782, 29224, 73984, 184102, 463687, 1156000, 2902870, 7245020, 18161170, 45356736, 113576596, 283765132, 710118262, 1774619616, 4439253196, 11095532840, 27749232700, 69363052600
Offset: 0

Views

Author

Paul Barry, Nov 04 2004

Keywords

Comments

Image of x/(1-2*x) under the transform g(x)->(1/sqrt(1-4*x^2))*g(x*c(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. This is the inverse of the Chebyshev transform which takes A(x) to ((1-x^2)/(1+x^2))*A(x/(1+x^2)).
Hankel transform is A125905(n-1), the alternating sign version of A001353. - Paul Barry, Nov 25 2007

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[1-4*x^2]*(Sqrt[1-4*x^2]+4*x-1)/(2*(5*x-2)*(4*x^2-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)

Formula

G.f.: sqrt(1-4x^2)(sqrt(1-4x^2)+4x-1)/(2(5x-2)(4x^2-1)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*(2^(n-2*k)-0^(n-2*k))/2.
a(n) = Sum_{k=0..n} C(n,floor(k/2))*A001045(n-k). - Paul Barry, Nov 25 2007
Conjecture: 2n*a(n) +(-13n+16)*a(n-1) +4(3n-8)*a(n-2) +4(13n-29)*a(n-3) +80(3-n)*a(n-4)=0. - R. J. Mathar, Dec 14 2011
a(n) ~ 5^n / 2^(n+1). - Vaclav Kotesovec, Feb 01 2014