A100118 Numbers whose sum of prime factors is prime (counted with multiplicity).
2, 3, 5, 6, 7, 10, 11, 12, 13, 17, 19, 22, 23, 28, 29, 31, 34, 37, 40, 41, 43, 45, 47, 48, 52, 53, 54, 56, 58, 59, 61, 63, 67, 71, 73, 75, 76, 79, 80, 82, 83, 88, 89, 90, 96, 97, 99, 101, 103, 104, 107, 108, 109, 113, 117, 118, 127, 131, 136, 137, 139, 142, 147, 148, 149
Offset: 1
Keywords
Examples
40 = 2^3*5 and 2*3 + 5 = 11 is a prime number. These numbers correspond to multiarrows in the multiorder of partitions of prime numbers into prime parts. For example: 2:2<=(2), 3:3<=(3), 6:5<=(2,3), 5:5<=(5), 12:7<=(2,2,3), 10:7<=(2,5), 7:7<=(7), 48:11<=(2,2,2,2,3), 52:11<=(2,3,3,3), 40:11<=(2,2,2,5), 45:11<=(3,3,5), 28:11<=(2,2,7), 11:11<=(11). - _Gus Wiseman_, Sep 14 2016
Links
- Jayanta Basu, Table of n, a(n) for n = 1..10000
- Gus Wiseman, Lattice form posets indexed by A100118
Programs
-
Maple
for n from 1 to 200 do if isprime(A001414(n)) then printf("%d,",n); end if; end do: # R. J. Mathar, Sep 09 2015
-
Mathematica
L = {}; Do[ww = Transpose[FactorInteger[k]];w = ww[[1]].ww[[2]]; If[PrimeQ[w], AppendTo[L, k]], {k, 2, 500}];L Select[Range[150], PrimeQ[Total[Times @@@ FactorInteger[#]]] &] (* Jayanta Basu, Aug 11 2013 *)
-
PARI
is(n)=my(f=factor(n)); isprime(sum(i=1,#f~,f[i,1]*f[i,2])) \\ Charles R Greathouse IV, Sep 21 2013
Comments