A100124 Decimal expansion of Sum_{n>0} 1/prime(n)!.
6, 7, 5, 1, 9, 8, 4, 3, 7, 9, 1, 1, 1, 1, 4, 3, 4, 1, 9, 0, 0, 5, 6, 1, 6, 0, 7, 5, 9, 1, 3, 5, 7, 2, 9, 9, 5, 3, 9, 2, 7, 6, 7, 8, 8, 5, 6, 5, 1, 3, 2, 6, 5, 1, 5, 6, 0, 3, 4, 1, 0, 6, 4, 5, 1, 6, 8, 8, 5, 8, 6, 1, 4, 8, 5, 4, 2, 4, 4, 3, 3, 4, 4, 1, 1, 4, 6, 2, 7, 2, 2, 8, 0, 2, 7, 8, 9, 5, 7, 1
Offset: 0
Examples
0.67519843791111434190056160759135729953927678856513265156034106451688586148...
Links
- Angelo B. Mingarelli, Abstract factorials, arXiv:0705.4299 [math.NT], 2007-2012.
Programs
-
Mathematica
RealDigits[Sum[1/Prime[n]!, {n, 1, 20}], 10, 100][[1]] (* Amiram Eldar, Nov 25 2020 *)
-
PARI
default(realprecision,100); sum(n=1,100,1/(prime(n)!),0.)
-
PARI
prec=exp(lambertw(default(realprecision)/exp(1)*log(10))+1)+9; P=s=.5;p=2;forprime(q=3,prec,P/=prod(i=p+1,q,i);s+=P;p=q); s \\ Charles R Greathouse IV, Nov 05 2013
Formula
Equals Sum_{k>0} A010051(k)/k!. - R. J. Cano, Jan 25 2017
From Amiram Eldar, Nov 25 2020: (Start)
Equals Sum_{k>=1} 1/A039716(k).
Equals Sum_{k>=1} pi(k)/((k+1)*(k-1)!), where pi = A000720. (End)
Comments