This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100152 #20 Sep 08 2022 08:45:15 %S A100152 1,24,100,260,535,956,1554,2360,3405,4720,6336,8284,10595,13300,16430, %T A100152 20016,24089,28680,33820,39540,45871,52844,60490,68840,77925,87776, %U A100152 98424,109900,122235,135460,149606,164704 %N A100152 Structured truncated cubic numbers. %H A100152 Vincenzo Librandi, <a href="/A100152/b100152.txt">Table of n, a(n) for n = 1..5000</a> %H A100152 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A100152 a(n) = (1/6)*n*(31*n^2 - 27*n + 2). %F A100152 G.f.: x*(1 + 20*x + 10*x^2)/(1-x)^4. - _Colin Barker_, Jan 19 2012 %F A100152 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=24, a(3)=100, a(4)=260. - _Harvey P. Dale_, Jan 11 2016 %F A100152 E.g.f.: x*(6 + 66*x + 31*x^2)*exp(x)/6. - _G. C. Greubel_, Oct 18 2018 %t A100152 Table[n/6 (31n^2-27n+2),{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,24,100,260},40] (* _Harvey P. Dale_, Jan 11 2016 *) %o A100152 (Magma) [(1/6)*(31*n^3-27*n^2+2*n): n in [1..40]]; // _Vincenzo Librandi_, Jul 19 2011 %o A100152 (PARI) vector(50, n, (31*n^3-27*n^2+2*n)/6) \\ _G. C. Greubel_, Oct 18 2018 %Y A100152 Cf. A100151, A100153 for adjacent structured Archimedean solids; A100145 for more on structured polyhedral numbers. Similar to truncated cubic numbers A005912. %K A100152 nonn,easy %O A100152 1,2 %A A100152 James A. Record (james.record(AT)gmail.com), Nov 07 2004