cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100164 Structured rhombic triacontahedral numbers (vertex structure 11).

This page as a plain text file.
%I A100164 #23 Aug 06 2025 09:27:33
%S A100164 1,32,143,384,805,1456,2387,3648,5289,7360,9911,12992,16653,20944,
%T A100164 25915,31616,38097,45408,53599,62720,72821,83952,96163,109504,124025,
%U A100164 139776,156807,175168,194909,216080,238731,262912,288673,316064,345135,375936,408517,442928
%N A100164 Structured rhombic triacontahedral numbers (vertex structure 11).
%C A100164 Also structured triakis icosahedral numbers (vertex structure 11) (cf. A100172 = alternate vertex).
%H A100164 Vincenzo Librandi, <a href="/A100164/b100164.txt">Table of n, a(n) for n = 1..5000</a>
%H A100164 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A100164 a(n) = (1/6)*(50*n^3 - 60*n^2 + 16*n) = (1/3)*n*(5*n-2)*(5*n-4).
%F A100164 From _Jaume Oliver Lafont_, Sep 08 2009: (Start)
%F A100164 a(n) = (5*(n-1) + 1)*(5*(n-1) + 3)*(5*(n-1) + 5)/15.
%F A100164 G.f.: x*(1 + 28*x + 21*x^2)/(1-x)^4. (End)
%F A100164 Sum_{n>=1} 1/a(n) = 3*sqrt((25-2*sqrt(5))/5)*Pi/16 + 9*sqrt(5)*log(phi)/16 - 15*log(5)/32, where phi is the golden ratio (A001622). - _Amiram Eldar_, Sep 20 2022
%t A100164 a[n_] := (n*(5*n - 2)*(5*n - 4))/3; Array[a, 30] (* _Amiram Eldar_, Sep 20 2022 *)
%o A100164 (Magma) [(1/6)*(50*n^3-60*n^2+16*n): n in [1..40]]; // _Vincenzo Librandi_, Jul 25 2011
%Y A100164 Cf. A100165 (alternate vertex), A100145 for more on structured polyhedral numbers.
%Y A100164 Cf. A001622, A100172.
%K A100164 easy,nonn
%O A100164 1,2
%A A100164 James A. Record (james.record(AT)gmail.com), Nov 07 2004