This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100177 #28 Sep 08 2022 08:45:15 %S A100177 1,4,18,64,175,396,784,1408,2349,3700,5566,8064,11323,15484,20700, %T A100177 27136,34969,44388,55594,68800,84231,102124,122728,146304,173125, %U A100177 203476,237654,275968,318739,366300,418996,477184,541233,611524,688450,772416,863839,963148,1070784,1187200,1312861,1448244 %N A100177 Structured meta-prism numbers, the n-th number from a structured n-gonal prism number sequence. %H A100177 Vincenzo Librandi, <a href="/A100177/b100177.txt">Table of n, a(n) for n = 1..10000</a> %H A100177 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A100177 a(n) = (1/6)*(3*n^4 - 9*n^3 + 12*n^2). %F A100177 G.f.: x*(1 - x + 8*x^2 + 4*x^3)/(1-x)^5. - _Colin Barker_, Jun 08 2012 %F A100177 a(n) = A060354(n) * n = A000124(n-2) * n^2. - _Bruce J. Nicholson_, Jul 11 2018 %e A100177 There are no 1- or 2-gonal prisms, so 1 and (2n) are used as the first and second terms since all the sequences begin as such. %t A100177 Table[(3n^4-9n^3+12n^2)/6,{n,50}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,4,18,64,175},50] (* _Harvey P. Dale_, Nov 07 2017 *) %o A100177 (PARI) a(n)=(1/6)*(3*n^4-9*n^3+12*n^2); %o A100177 (Magma) [(1/6)*(3*n^4-9*n^3+12*n^2): n in [1..50] ]; // _Vincenzo Librandi_, Aug 02 2011 %Y A100177 Cf. A002411, A000578, A050509, A006597, A100176, A100177 - structured prisms; A006484 for other meta structured numbers; and A100145 for more on structured numbers. %Y A100177 Cf. A060354, A000124. %K A100177 easy,nonn %O A100177 1,2 %A A100177 James A. Record (james.record(AT)gmail.com), Nov 07 2004