cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100195 Numbers n such that the denominator of BernoulliB(n) is a record.

This page as a plain text file.
%I A100195 #22 Jul 22 2025 13:39:13
%S A100195 0,1,2,4,6,10,12,30,36,60,72,108,120,144,180,240,360,420,540,840,1008,
%T A100195 1080,1200,1260,1620,1680,2016,2160,2520,3360,3780,5040,6480,7560,
%U A100195 8400,10080,12600,15120,25200,30240,42840,45360,55440,60480,75600,85680,100800
%N A100195 Numbers n such that the denominator of BernoulliB(n) is a record.
%H A100195 Daniel Suteu, <a href="/A100195/b100195.txt">Table of n, a(n) for n = 1..90</a>
%H A100195 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BernoulliNumber.html">Bernoulli Number</a>
%H A100195 Wikipedia, <a href="http://en.wikipedia.org/wiki/Von_Staudt%E2%80%93Clausen_theorem">Von Staudt-Clausen theorem</a>
%t A100195 DeleteDuplicates[Table[{n,Denominator[BernoulliB[n]]},{n,0,101000}],GreaterEqual[#1[[2]],#2[[2]]]&][[;;,1]] (* _Harvey P. Dale_, Jul 22 2025 *)
%o A100195 (PARI) b(n) = if((n==0) || (n>1 && n%2==1), 1, my(d=divisors(n)); prod(k=1, #d, if(isprime(d[k]+1), d[k]+1, 1))); \\ more efficient than denominator(bernfrac(n))
%o A100195 lista(n) = { my(m=0); for(k=0, n, my(d=b(k)); if(d>m, m=d; print1(k, ", "))); }
%o A100195 lista(100000); \\ _Daniel Suteu_, Dec 23 2018
%Y A100195 Cf. A100194 (the corresponding Bernoulli denominators), A000367/A002445.
%K A100195 nonn
%O A100195 1,3
%A A100195 _Eric W. Weisstein_, Nov 08 2004
%E A100195 Corrected and extended by _Daniel Suteu_, Dec 23 2018