cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100269 Primes of the form x^8 + y^8 with x^4 + y^4, x^2 + y^2 and x+y also prime.

This page as a plain text file.
%I A100269 #14 Feb 16 2025 08:32:55
%S A100269 2,257,65537,2724909545357921,3282116715437377,40213879071634241,
%T A100269 147578912575757441,303879829574456257,697576026529536481,
%U A100269 1316565220482548321,2860283484326400961,4080251077774711937
%N A100269 Primes of the form x^8 + y^8 with x^4 + y^4, x^2 + y^2 and x+y also prime.
%C A100269 The Mathematica program generates numbers of the form x^8 + y^8 in order of increasing magnitude; it accepts a number when all the x^2^k + y^2^k are prime for k=0,1,2,3.
%H A100269 Vincenzo Librandi, <a href="/A100269/b100269.txt">Table of n, a(n) for n = 1..100</a>
%H A100269 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GeneralizedFermatNumber.html">Generalized Fermat Number</a>.
%t A100269 n=3; pwr=2^n; xmax=2; r=Range[xmax]; num=r^pwr+r^pwr; Table[While[p=Min[num]; x=Position[num, p][[1, 1]]; y=r[[x]]; r[[x]]++; num[[x]]=x^pwr+r[[x]]^pwr; If[x==xmax, xmax++; AppendTo[r, xmax+1]; AppendTo[num, xmax^pwr+(xmax+1)^pwr]]; allPrime=True; k=0; While[k<=n&&allPrime, allPrime=PrimeQ[x^2^k+y^2^k]; k++ ]; !allPrime]; p, {20}]
%Y A100269 Cf. A099332, A100268, A100270.
%K A100269 nonn
%O A100269 1,1
%A A100269 _T. D. Noe_, Nov 11 2004