This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A100321 #12 Feb 02 2023 17:16:11 %S A100321 1,1,0,2,-3,8,-16,35,-72,150,-307,628,-1276,2587,-5228,10546,-21235, %T A100321 42704,-85784,172179,-345344,692286,-1387155,2778492,-5563748, %U A100321 11138443,-22294596,44617850,-89282067,178639160,-357399712,714995843,-1430309496,2861133222,-5723098483,11447543236 %N A100321 The trinomial transform (A027907) gives powers of 2, while the trinomial transform of this sequence shift one place left gives powers of 3. %H A100321 G. C. Greubel, <a href="/A100321/b100321.txt">Table of n, a(n) for n = 0..1000</a> %H A100321 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-2,2,3,-2). %F A100321 G.f.: (1 + 3*x - 3*x^3) / (1 + 2*x - 2*x^2 - 3*x^3 + 2*x^4). %F A100321 2^n = Sum_{k=0..2*n} A027907(n, k)*a(k). %F A100321 3^n = Sum_{k=0..2*n} A027907(n, k)*a(k+1). %F A100321 a(n) = (1/3)*((-1)^n*(3*Fibonacci(n-1) - 2^n) + 1). - _Ralf Stephan_, May 15 2007 %e A100321 2^3 = 1*(1) + 3*(1) + 6*(0) + 7*(2) + 6*(-3) + 3*(8) + 1*(-16). %e A100321 3^3 = 1*(1) + 3*(0) + 6*(2) + 7*(-3) + 6*(8) + 3*(-16) + 1*(35). %t A100321 LinearRecurrence[{-2,2,3,-2}, {1,1,0,2}, 41] (* _G. C. Greubel_, Feb 01 2023 *) %o A100321 (PARI) a(n)=polcoeff((1+3*x-3*x^3)/(1+2*x-2*x^2-3*x^3+2*x^4+x*O(x^n)),n) %o A100321 (Magma) [((-1)^n*(3*Fibonacci(n-1) -2^n) +1)/3: n in [0..40]]; // _G. C. Greubel_, Feb 01 2023 %o A100321 (SageMath) %o A100321 def A100321(n): return ((-1)^n*(3*fibonacci(n-1) -2^n) +1)/3 %o A100321 [A100321(n) for n in range(41)] # _G. C. Greubel_, Feb 01 2023 %Y A100321 Cf. A000045, A027907. %Y A100321 Cf. A000079, A000244. %K A100321 sign %O A100321 0,4 %A A100321 _Paul D. Hanna_, Nov 15 2004