cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100321 The trinomial transform (A027907) gives powers of 2, while the trinomial transform of this sequence shift one place left gives powers of 3.

This page as a plain text file.
%I A100321 #12 Feb 02 2023 17:16:11
%S A100321 1,1,0,2,-3,8,-16,35,-72,150,-307,628,-1276,2587,-5228,10546,-21235,
%T A100321 42704,-85784,172179,-345344,692286,-1387155,2778492,-5563748,
%U A100321 11138443,-22294596,44617850,-89282067,178639160,-357399712,714995843,-1430309496,2861133222,-5723098483,11447543236
%N A100321 The trinomial transform (A027907) gives powers of 2, while the trinomial transform of this sequence shift one place left gives powers of 3.
%H A100321 G. C. Greubel, <a href="/A100321/b100321.txt">Table of n, a(n) for n = 0..1000</a>
%H A100321 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-2,2,3,-2).
%F A100321 G.f.: (1 + 3*x - 3*x^3) / (1 + 2*x - 2*x^2 - 3*x^3 + 2*x^4).
%F A100321 2^n = Sum_{k=0..2*n} A027907(n, k)*a(k).
%F A100321 3^n = Sum_{k=0..2*n} A027907(n, k)*a(k+1).
%F A100321 a(n) = (1/3)*((-1)^n*(3*Fibonacci(n-1) - 2^n) + 1). - _Ralf Stephan_, May 15 2007
%e A100321 2^3 = 1*(1) + 3*(1) + 6*(0) + 7*(2) + 6*(-3) + 3*(8) + 1*(-16).
%e A100321 3^3 = 1*(1) + 3*(0) + 6*(2) + 7*(-3) + 6*(8) + 3*(-16) + 1*(35).
%t A100321 LinearRecurrence[{-2,2,3,-2}, {1,1,0,2}, 41] (* _G. C. Greubel_, Feb 01 2023 *)
%o A100321 (PARI) a(n)=polcoeff((1+3*x-3*x^3)/(1+2*x-2*x^2-3*x^3+2*x^4+x*O(x^n)),n)
%o A100321 (Magma) [((-1)^n*(3*Fibonacci(n-1) -2^n) +1)/3: n in [0..40]]; // _G. C. Greubel_, Feb 01 2023
%o A100321 (SageMath)
%o A100321 def A100321(n): return ((-1)^n*(3*fibonacci(n-1) -2^n) +1)/3
%o A100321 [A100321(n) for n in range(41)] # _G. C. Greubel_, Feb 01 2023
%Y A100321 Cf. A000045, A027907.
%Y A100321 Cf. A000079, A000244.
%K A100321 sign
%O A100321 0,4
%A A100321 _Paul D. Hanna_, Nov 15 2004