A100344 Gives the i-th coefficient M(k,i) of the decomposition of the polynomials B(k,X^2) in the basis of all B(i,X), where B(i,X) is the i-th binomial polynomial: B(i,X) = X(X-1)...(X-i+1)/i! for any i > 0 and B(0,X) = 1 by definition.
1, 0, 1, 2, 0, 0, 6, 18, 12, 0, 0, 4, 72, 248, 300, 120, 0, 0, 1, 123, 1322, 4800, 7800, 5880, 1680, 0, 0, 0, 126, 3864, 32550, 121212, 235200, 248640, 136080, 30240
Offset: 0
Examples
M(2,2)=6 because B(2,X^2) = 0*B(0,X) + 0*B(1,X) + 6*B(2,X) + 18*B(3,X) + 12*B(4,X).
Links
- J. F. Michon, J.-B. Yunes and P. Valarcher, On maximal QROBDD's of Boolean functions, Theor. Inform. Appl. 39 (2005), no. 4, 677-686.
Crossrefs
Cf. for binomial polynomials: A080959.
Formula
M(0, 0) = 1 and, for all i > 0, M(0, i) = 0. Let M(k, i) = 0 if all i < 0 and all k for ease. Then, for all k > 0, i > 0: M(k, i)= [(i^2-k+1)M(k-1, i) + i(2i-1)M(k-1, i-1) + i(i-1)M(k-1, i-2) ]/k.
Comments