cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100386 Numbers n such that for m=n to n+9, A006530(m) decreases.

This page as a plain text file.
%I A100386 #12 Oct 19 2017 03:14:37
%S A100386 586951,1473257,4982941,13565441,24954141,25384714,26576686,32026196,
%T A100386 35797623,35953989,37972276,39048260,51755761,58769257,60682681,
%U A100386 71342703,77863117,80826231,84766857,89768134,98363506,110482826,115045547,115898807,120797465
%N A100386 Numbers n such that for m=n to n+9, A006530(m) decreases.
%C A100386 A006530(n) is the largest prime factor of n.
%H A100386 Donovan Johnson, <a href="/A100386/b100386.txt">Table of n, a(n) for n = 1..1000</a>
%e A100386 586951 is here because the largest prime factors of 586951..586960 are 586951,73369,21739,9467,1319,1193,1181,1091,677,29.
%t A100386 <<NumberTheory`NumberTheoryFunctions` {ta={{0}},tm=TimeUsed[]}; mxp[x_] :=Max[PrimeFactorList[x]] Do[g=n;s1=mxp[n];s2=mxp[n+1];s3=mxp[n+2];s4=mxp[n+3];s5=mxp[n+4];s6=mxp[n+5]; s7=mxp[n+6];s8=mxp[n+7];s9=mxp[n+8];s10=mxp[n+9]; If[ !Greater[s2,s1]&&!Greater[s3,s2]&&!Greater[s4,s3]&& !Greater[s5,s4]&&!Greater[s6,s5]&&!Greater[s7,s6]&& !Greater[s8,s7]&&!Greater[s9,s8]&&!Greater[s10,s9], Print[{n,{s1,s2,s3,s4,s5,s6,s7,s8,s9,s10}}]; ta=Append[ta,n]],{n,586950,21977000}];ta
%t A100386 Position[Partition[Table[FactorInteger[n][[-1,1]],{n,121*10^6}],10,1],_?(Max[Differences[#]]<0&),{1},Heads->False]//Flatten (* _Harvey P. Dale_, Sep 18 2016 *)
%Y A100386 Cf. A006530, A070087, A071870, A100385.
%K A100386 nonn
%O A100386 1,1
%A A100386 _Labos Elemer_, Dec 09 2004
%E A100386 Edited by _Don Reble_, Jun 13 2007