cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A100442 Binomial transform of A003418.

This page as a plain text file.
%I A100442 #9 Apr 08 2023 02:28:56
%S A100442 1,2,5,16,53,206,757,2780,10481,39898,146981,531752,1939885,7397846,
%T A100442 29864213,122842036,488455217,1830814610,6508723141,22667908448,
%U A100442 81343971941,312864734302,1280329420085,5332923123596,21687872072113,84397157118026,313673593771877
%N A100442 Binomial transform of A003418.
%H A100442 G. C. Greubel, <a href="/A100442/b100442.txt">Table of n, a(n) for n = 1..1000</a>
%F A100442 a(n) = Sum_{j=0..n-1} binomial(n-1,j)*A003418(j). - _G. C. Greubel_, Apr 08 2023
%t A100442 A100442[n_]:= 1 +Sum[Binomial[n-1,k]*Apply[LCM, Range[1,k]], {k,n-1}];
%t A100442 Table[A100442[n], {n,50}] (* _G. C. Greubel_, Apr 08 2023 *)
%o A100442 (Magma) [(&+[Binomial(n-1,k)*Lcm([1..k]): k in [0..n-1]]): n in [1..50]]; // _G. C. Greubel_, Apr 08 2023
%o A100442 (SageMath)
%o A100442 def A100442(n): return sum(binomial(n-1,k)*lcm(range(1,k+1)) for k in range(n) )
%o A100442 [A100442(n) for n in range(1,51)] # _G. C. Greubel_, Apr 08 2023
%Y A100442 Cf. A003418, A100443.
%K A100442 nonn
%O A100442 1,2
%A A100442 _N. J. A. Sloane_, Nov 21 2004